LC2/L.C4

BASIC

Version 2.0/3.0

Form 201.6

July 1894

OPTO 22

43044 Business Park Drive » Temecula, CA 92590-3614
Phone: 800/321-0PTO {6786) or 909/695-3000
Fax: 800/832-0PTO {6786) or 909/695-2712
internet Web site: http:/fwww.opto22.com

Product Support Services:
800/TEK-OPTO (835-6786} or 909/695-3080
Fax: 909/695-3017
E-mail: support@opto22.com
Bulletin Board System {BBS): 909/695-1367
FTP site: fip.opto22.com

LC2/L.C4 BASIC

This technical document describes the features, specifications, and operations of the product.

The information in this manual has been carefully checked and is believed to be accurate; however,
no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to
change without notice.

Opto 22 warrants all its products to be free from defects in material or workmanship for 24 months
from the manufacturing date code.

This warranty is limited to the original cost of the unit only and does not cover installation, labor, or
any other contingent costs.

IBM is a registered trademark of International Business Machine Corporation.

IBM PC, XT, AT, and PS/2 are trademarks of International Business Machine Corporation.
Microsoft BASIC and GW-BASIC are registered trademarks of Microsoft Corporation.
OPTOMUX, OPTOWARE, and PAMUX are trademarks of OPTOQ 22,

LC2/LC4 BASIC

Table of Contents

GENERAL INFORMATION

important Thingstfo Know e 1
Introduction e e e e e e e e e e e e e e e 2
Calling the ROM-Based OPTOWARE Driver. 3
BASIC Program Elements e 4
BASIC EXPressions o o i it it e e e e e e 5
BASIC Operators i it i e e e e 6

QUICK REFERENCE

Listof Reserved Words o o o i e e e e e e 9
Commands e e e e e e e e e e e e e e e e 10
Statements e e e e e e e e e e e e e e e 11
FUNCHONS . . . o o v o et e i3

LC2/LC4 COMMANDS, STATEMENTS and FUNCTIONS

ABS FUNCLON o o e e e e e e e e e e e e e e e e 15
ADDRESS@ Variable o e e e 16
ASCFRUNCHON o e e e e e e e e e e 17
AWAKE Command o e e e e e e e e e e e 18
CALL Statement o i o e e e e e e e e e e e e e e 19
CHRS FUNCLiON o e e e e e e e e e e e e e e 20
CINT Function o e e e e e e e e e e e e e e e 21
CLEAR Command o o e e e e e 22
CLOSE Statement o v i i i e e e e e e e e e e e e e e 23
CONT Command o e e e e e e e e e e e e e e e 24
COS FUNCLON . . . o v e e e e e e e e e e e e e e e e e e 25
DATA Statement o e e e e e e e e e e e e e e e e e e 26
DATE$ Variable and Statement 27
DELAY Statement e e e e e e e e e e e e e 28
DELETE Command i v i e e e e e e e e e e e 29
DIM Statement o o o e 30
END Statement o e e e e e e e e e e e 3
EOFFUNCHioN o o o o e e e e e e e e e e e e e e e 32
ERL Variahle o e e e e e e e e e e e e e e e 33
ERR Variable i e e e e e e e e e e e e e e 34
EXP FUNGHON o o e e e e e e e e e e e e e e e e e e e 35

LC2/LC4 BASIC

FILES Command e e e 35
FIX Function e e e e e e e e 36
FORand NEXT Statements o i i i i i 37
FRE Function @ e e e e e e e 39
GOSUB and RETURN Statements v 40
GOTO Statement e e e e e e e e 41
HEXS Function o e e e e e e e 42
HIDECommand e e e e e e e 42
IFStatement e e e e e 43
INKEY$ Variable e e e e 44
INP RUNnCtion L e e e e e e e 45
INPUT Statement e e e e e e e 46
INPUTS Function e e e e e e e e e e e e e 48
INSTR Function (. i e e e e e e e e e 49
INT Function e e e e e 50
KILLCommand [51
LEFTS Funclion o i e e e e e e e 52
LEN Function 0 . o i e e e e e e e e e e e e e 53
LET Statement o e e e e e e e e 54
LINE INPUT Statement i et e e e e e e e 55
LIST, LLISTCommand et e e e e 56
LOC Function e e e e e e e 57
LOF Function o i e e e e e e e e e e 58
LOG Function o . o e e e e e e e e e 59
MID$ Function e e e e e e e 59
NEW Command e e e e e e 60
ON COM{n) GOSUB Statement i 61
ON ERROR GOTQO Statement et i e oo o e 62
ON... GOSUB And ON... GOTO Statements 63
ON KEY(n) Statement e 64
ONTIMER Statement o e e e e e e e 66
OPEN Statement e e e e e e e 68
OPEN"COM.."AS #f Statement, 69
OQUT Statement o o e e e e e e e e e e e e e e e e e 70
PEEK Function i e e e e e e e e e e 71
POKE Function i e e e e e e e e e 72
PRINT, LPRINT Statement e e e e e e e 73
READ Statement L e e e e 74
REM Statement o e e e e e e e 75
BRESTORE Statement e e e e e e e 76

LC2/1.C4 BASIC

BESUME Statement o o o e e e e e e e e e e 77
RETURN Statement e i it e e e 78
RIGHTSFUNCON o o e e e e e e e e e e 79
RUNCommand it e e e e e e e e e e 80
SINFUNCLON o ot et e e e e e e e e e e e e e e e 81
SLEEP Command e e e e 82
SQAR FUNGHON v e e e e e e e e e e e e 83
STOP Statement e e e e e e e e e e 84
STRS FUNGHON o s o e e e e e e e e e e e e e 85
TIMES Variable And Statement o L e 86
TIMER FUNCHION o it o e e e e e e e e e e e e e 87
TROFFARd TRON Commands e a8
VAL FUNCHON e e e e e e e e e e e e e e 89
VABPTR Funclion o i e e e e e e e e e e e 90
WAIT Statement e e e e e e e e e e e 91
WHILE AND WEND Statements o it e it oo e ea e e 92
APPENDICES
A-ErrorMessages i i e e e e e e e e 93
B-ASCH Character Set e e e 97
C - Multidropping Several Local Controllers 99
D-Sample Programs e e e e 101
E-Tipsand Techniques i 111
F - Exceptions and Differences from IBM PC/Microsoft BASIC 112
G - IBM PC/Microsoft BASIC Commands Not Supported in LC2/LC4 BASIC 113

iii

LC2/LC4 BASIC

LC2/LC4 BASIC

GENERAL INFORMATION
Important Things to Know

* % %% READ THIS FIRST ****

For those who are familiar with BASIC and want to begin using LC2/1.C4 right away
(and not read the manual), the following tips may save you hours of aggravation.

+ Always use the NEW command before entering or downloading a program.

* When downloading a program written with IBM/Microsoft BASIC Interpreter, make sure it is in
the ASCII format by using the SAVE "FILENAME" A command. Only ASCI files can be
downloaded to the LC2/LC4,

* Make sure your programs do not have multiple statements on one line. The following line will
generate a syntax error when LC2/1.C4 tries to run it

100 A=1:B=2:FOR 1% = 1 TO 10: NEXT

» Make a backup copy of the LC2/L C4 Utilities disk (Part Number 9970 or 8870) before using
it. Be careful when using the upload command of LCTERM because any existing file with
the specified file name will be overwritten when a file is uploaded.

* The Appendices contain valuable information. Please read them first.

LC2/LC4 BASIC

Introduction

The LC2/LC4 Local Controller contains a BASIC Interpreter with a command set very similar to the
IBM/Microsoft BASIC command set found on the IBM PC, XT, AT, PS/2, and compatibles. Since the
LC2 and L.C4 are local controllers without the peripherals associated with personal computers, (floppy
disks, hard disks, color or monochrome displays and keyboards), many commands and statements used
to communicate with these devices have heen left out of the L.C2/LC4 BASIC. To make efficient use of
program space and to optimize execution speed, LC2/L.C4 BASIC is limited to single-dimensional array
variables with the maximum number of array elements equal to 255 and real-type variables limited to
single precision. String and integer-type variables are supported,

The OPTOWARE driver is included in the system ROM in order to facilitate communications on the
ORPTOMUX network,

In addition to the OPTOWARE driver, a driver for the PAMUX family of /O systems is also included in
the LC4 BASIC ROM. The EX1 PAMUX bus daugther card is required to use the PAMUX driver.

* %% IMPORTANT * * * IMPORTANT * * * IMPORTANT * * *

Before any program is entered or downloaded, the NEW
command must be issued. This insures that
LC2/LC4 BASIC’s pointers are reset to the beginning
of the file. If the NEW command is not issued
prior to entering or downloading a program,
erroneous results may occur.

LC2/LC4 BASIC

Calling the ROM-Based OPTOWARE Driver

The OPTOWARE driver allows a user to communicate with an OPTOMUX network by using the CALL
statement. The LC2/LC4 OPTOWARE driver is very similar to the disk-based OPTOWARE driver for
the IBM PC with one important exception. The LC2/L.C4’s driver is at a fixed location in memory and
does not have to be loaded from a disk. Consequently, when assigning the offset location to the
OPTOWARE variable, the ROM address of the driver must be used.

When using the IBM PC disk-based version of OPTOWARE, the following statements were used to load
and declare the location of the driver:

10 DEF SEG = &H3300 'Define Segment For Loading Driver
20 BLOAD *BRIVER.COM"0 'Load Driver From Disk At Offset 0
30 OPTOWARE = 0 'Driver Offset

These statements should be replaced with the following statement:
10 OPTOWARE = 4 "Location Of ROM-based Driver
Parameters that are to be passed to the driver should be dimensioned the same way as shown in the

OPTOWARE manual. Calling the driver is performed in the same manner as described in the
disk-based OPTOWARE manual, Form 092.

The following is a simple example of using the LC2/LC4 ROM-based OPTOWARE driver to send a
power up clear command to an OPTOMUX unit at address 255:

100 OPTOWARE =4 'Specify Offset Of Driver

120 DIM POSIT(15) '‘Dimension POSITIONS To 16 Elements
130 DIM INFO%(15) 'Dimension INFO To 16 Elements

140 DiM MODI96(1) 'Dimension MODIFIERS To 2 efements
150 FORI% =0 TO 15

160 POSIT%(I%) = 0 'Initialize POSITIONS Array To 0

170 INFO%(io6) = O 'Initialize INFC Array To O

180 NEXT

180 MODI%(0) = 0 'Initialize MODIFIERS To 0

200 MQODI%s{1) = 0

210 ERRCOD% = 0 'Initialize ERRCRS To 0

220 CMD% =0 'Set Power Up Clear Command

230 ADDR% = 255 'Set OPTOMUX Address

300 *

310 * Call The OPTOWARE Driver

320 *

330 CALL OPTOWARE(ERRCOD%,ADDR%,CMD%, POSIT%(0), MODIS(0),INFO%{0))
340 IF ERRCOD% < 0 THEN PRINT "Return Error Code Is: ,ERRORS%

350 RETURN

LC2/LC4 BASIC

LC2/LC4 BASIC Program Elements

An LC2/LC4 BASIC program is made up of a group of instructions which can perform a task or take
some kind of action. More specifically, a program is composed of a number of lines. Each program line
begins with a unique number followed by a command or statement. For the sake of simplicity and
efficiency, LC2/LC4 BASIC is restricted to only one command or statement per line. The format of a
typical line is as follows:

nnnnn - [COMMAND or STATEMENT] [COMMENT]

Line Numbers:

‘annnn” is the fine number of the LC2/LC4 BASIC program line and must be an integer in the
range of 0 to 32,767. Every line in an LC2/LC4 BASIC program must begin with a line number.
Program lines are executed sequentially beginning at the lowest numbered line whenever a RUN
command is given. If a BASIC statement is not preceded by a line number, LC2/LC4 BASIC will
attempt to execute it directly.

Commands:

Commands are system level instructions such as LIST, RUN, and NEW which are most often
used in direct mode to operate on an existing program or set up a new program. The LC2/LC4
BASIC commands may also be used within an LC2/LC4 program, however, it is up to the user to
exercise care when using commands such as CLEAR or NEW in a program line.

Statements:

The LC2/1.C4 BASIC interpreter is capable of executing a wide variety of statements. There are
statements to perform input and output from the serial ports, statements to change the order of
flow of program execution and statements that act on data items. Many statements include
expressions.

Comment:

A comment is a non-executable statement used to explain a program's operation and/or purpose.
It is regularly used as a form of documenting for a program. A comment is preceded by a single
quote character (') or the REM statement.

LC2/LC4 BASIC

LC2/LC4 BASIC Expressions

Expressicns are an essential part of an LC2/LC4 BASIC program. They contain references to variables
and constants (data items) and also to instructions which operate on or combine the data items to
produce a desired result. The instructions that make up an expression are called operators.
Expressions can be classified into four groups: numeric, string, relational, and functional, depending
upon the type of results they yield.

Numeric Expressions

Numeric expressions are used to operate on numeric data using numeric operatars. There are
two types of numeric expressions: integer and real.

Integer: Those expressions involving integer variables or constants. An integer is defined
as a whole number in the range of -32,767 to +32,767 (16 bits).

Real: An expression which contains at least one term of the type REAL. A REAL may
have a fractional part or be a number which falls cutside the integer range. The range for
real numbers used by LC2/LC4 BASIC is from =1.1175E-38 to 3.40E+38. Real numbers
are sometimes referred to as floating peint numbers.

String Expressions:

String expressions are those that are used to operate on or combine string (text) variables or
constants. A string data item or the result of a string expression is limited to 255 characters.

Relational Expressions:

Relational expressions are used to compare data items and provide a result which is either true or
false. This result is always an integer number with a value of -1 if the result is true or a value of 0
if the result is false. Relational expressions can operate on numeric or string data by testing for
conditions using the six different relational operators. Relational operators are useful for making
decisions regarding program flow, and may be combined within an expression using logical
operators.

Functional Expressions:

Functional expressions are used to execute predetermined operations on an operand.

LC2/L.C4 BASIC

LC2/LC4 BASIC Operators

Arithmetic Operators:

The following arithmetic operators are listed in order of precedence:

Qperator Operation Sample Expression
- Negation -A

* Multiplication A*B

/ Floating Point Division A/B

\ Integer Division A\B

MOD Modulo Arithmetic AMODB
+ Addition A+B

- Subtraction A-B

Integer division using the \ operator will round the two operands to integers, perform the division
and then truncate the result to an integer. For example:

10 X =22575.99
20 PRINT X

RUN

3

ok

The MOD operator performs the modulo function which returns the integer value of the remainder
after performing an integer division. For example:

10 X=8MOD3
20 PRINT X
RUN

2

ok

LC2/LC4 BASIC

Logical Operators:

Logical operators perform Boolean or logical operations on numeric values and are useful for
joining relational expressions. Operations using the logical operators return a true or false value.
Operands are considered true if they are not equal to zero and false if they are equal to zero. A
logical operation is performed on a bit-by-bit basis. The following is a list of logical operators
used by LC2/LC4 BASIC.

NOT AND
A NOT A A B A AND B
F T F F F
T F F T F

T F F

T T T
OR XOR
A B AORB A B A XORB
F F F F F F
F T T F T T
T F T T F T
T T T T T F

The order of precedence of logical operators is NOT, AND, OR, and XOR.

For example, two numbers, 28 and 36 (011100, 100100 in binary), are used in the following
examples to illustrate logical operations:

2B AND 36 = 4 Bit by Bit: 28 = 011100
36 = 100100
4 = 000100

28 OR 36 = 60 Bit by Bit: 28 = 011100
36 = 100100
60 = 111100

28 XOR 36 = 56 Bit by Bit: 28 = 011100
36 = 100100
56 = 111000

LC2/L.C4 BASIC

Relational Operators:

Relational operaters are used to compare two values and return either a true (-1) or a false (0)
result. Program flow can then be altered based on this result. Relational operators will work with
either numeric operands or string operands. Howaever, both operands in an expression must be of
the same type. The following is a table of relational operators and their functions:

Operators Relation Example
= Equality A=B
<> Of >< Inequality A<>B
< Less than A Greater than A>B
<= Of =< Less than or equal to A<=B
>= OF => Greater than or equal to A>=B

Note On String Comparisons:

String comparisons are performed alphabetically by a character's ASCH value. Each string
operand is compared one character at a time starting with the first (left-most) character of
each string. A character is considered less than another character if the ASCH value of
the former is less than the ASCIl value of the latter. A string with fewer characters than
another string is always less than the longer string. Leading and trailing blanks are also
evaluated and are therefore significant. When string constants are used they must be
enclosed in quotation marks. The following examples are of relational expressions which
are all true:

5=5

47 <= 47

47 <= 65

XX < "o

ey

"230" < "470"

"myname” > "Myname"

10 <> 15

Functional Operators:

Functional operators are used to perform a predetermined operation on an operand. Functional
operators are grouped into two categories: numeric and string functions. Number functions return
a numeric value and string functions return a string value. The following are examples of
functional operators:

ABS{X) Returns the absolute value of x
COS{) Returns the cosine of angle x (in radians}
DATES Returns the system date

LEN({x$) Returns the number of characters in x$

List of Reserved Words

There are many words which have a special meaning to the LC2/LC4 BASIC. These words are defined
as "Reserved Words" and include all the operators, commands, functions, and statements of LC2/L.C4
In order for LC2/LC4 BASIC to
understand the set of operators, commands, statements, and functions, these words must be
appropriately delimited. Proper delimiting is accomplished by using spaces (or other characters allowed
by the syntax of each command) to separate the reserved words from data or other reserved words,

BASIC, Reserved words cannot be used as variable names.

ABS
ADDRESS®@
AND
AS

ASC
AWAKE
CALL
CHR$
CINT
CLEAR
CLOSE
COM
CONT
Ccos
DATA

ABS
ADDRESS@
AND
APPEND
AS

ASC
AWAKE
CALL
CHR$
CINT
CLEAR
CLOSE
COM
CONT
cos
DATA

DATE$
DELAY
DELETE
DIM
ELSE
END
ERL
ERR
ERROR
EXP
FIX
FOR
FRE
GosuB
GOTO

DATES$
DELAY
DELETE
DIM
ELSE
END
EQF
ERL
ERR
ERRCR
EXP
FILES
FIX
FOR
FRE
GosuB

LC2 Release 2 Reserved Words

HEX$
HIDE

IF
INKEY$
INP
INPUT
INPUTS
INSTR
INT
KEY
LEFTS
LEN
LET
LINE
LIST

I.C4 Release 3 Reserved Words

GOTO
HEX$
HIDE
IF
INKEY$
INP
INPUT
INPUTS
INSTR
INT
KEY
KILL
LEFTS$
LEN
LET
LINE

LLIST
LOC
LOF
LOG
LPRINT
MID$
NEW
NEXT
NOT
OFF
ON
OPEN
OR
ouT
PEEK

LIST
LLIST
LOC
LOF
LOG
LPRINT
MID$
NEW
NEXT
NOT
OFF
ON
OPEN
CR
ouT
OQUTPUT

QUICK REFERENCE

POKE
PRINT
READ
REM
RESTORE
RESUME
RETURN
RIGHTS
RUN

SIN
SLEEP
SQR
STEP
STOP
STR$

PEEK
POKE
PRINT
READ
REM
RESTORE
RESUME
RETURN
RIGHTS
RUN
SIN
SLEEP
SQR
STEP
STOP
STR$

THEN
TIMES$
TIMER
TO
TROFF
TRON
VAL
VARPTR
WEND
WHILE
XOR

THEN
TIMES$
TIMER
TO
TROFF
TRON
VAL
VARPTR
WAIT
WEND
WHILE
XOR

Commands

The following is a list of all the commands included in LC2/LC4 BASIC. More detailed information,
including examples, can be found in the "LC2/LC4 Commands, Statements, And Functions" section.

COMMAND ACTION

ADDRESS®@ Variable used for assigning a unique address to a LC2/L.C4
for selective host to LC2/LC4 communications.

AWAKE address Enables multidropped LC2/L.C4's for selective host LC2/LC4
communications.

CLEAR Clears all variables in program and allocates space for
machine language programs.

CONT Continues program execution.

DELETE linei-line2

FILES
HIBE
KILL filespec

LIST

LIST linel-line2

LLIST linet-line2

NEW

RUN

SLEEP address

TRON, TROFF

Deletes specified lines from program.

Displays the names of files in RAM disk (L.C4 only).
Prevents a program from being listed.

Delete a file from the RAM disk (LC4 only).

Lists entire program.

Lists program lines specified.

Lists program lines out the OPTOMUX communications port.

Erases the current program in memory and its associated
variables.

Executes a program, beginning at the first program line.

Disables multidropped LC2/L.C4’s for selective host to LC2/L.C4
communications.

Tums on or off the trace feature.

Statements

This section provides a quick description of all the LC2/LC4 BASIC statements. The list tells what each
statement does and shows the syntax. For the more complex statements, the syntax shown may not be
complete., For a complete description, refer to the "LC2/LC4 Commands, Statements, And Functions"
section.

STATEMENT

ACTION

CALL numvar (variable list)
CLOSE #f

DATA list of constants

DATES = x$
DELAY n

DIM list of subscripted variables

END

FOR variable = x TOy STEP z

GOSUB line

GOTO line

IF expression THEN statement
ELSE statement

INPUT "prompt";variable list
LET v=expression

LINE INPUT "prompt";stringvar

LPRINT list of expressions

NEXT v

ON KEY{x$) GOSUB line

ON TIMER(n) GOSUB line

Calls a machine language program.
Closes the logical device or file.

Creates a list of data to be accessed by the READ
statement.

Used to set the system date.
Causes BASIC to wait for a time specified by n.

Declares maximum subscript values for arrays
and allocates space for them.,

Stops the program, closes all files, and returns
to command level.

Repeats program lines a number of times. The NEXT
statement closes the loop.

Calls a subroutine by branching to the specified line.
The RETURN statement returns from the subroutine.

Branches to the specified line.

Performs the statement following the THEN if the
expression is true (non-zero). Otherwise, performs
the statement following the ELSE or goes to the
next line.

Reads data from the host communications port.
Assigns the value of the expression to the variable v.

Reads an entire line from the host input port,
ignoring commas or other delimiters.

Prints data on a printer connected to the OPTOMUX
communications port.

Closes a FOR... NEXT loop (see FOR).

Branches to subroutine at line when a trapped
character is received at host port (COMO).

Branches to subroutine at line when n seconds have
elapsed.

Statements (continued)

STATEMENT

ACTION

ON COM(n) GOSUB fine

ON ERROR GOTO line
ON n GOSUB line list
ON n GOTO line list
OPEN filespec

OPEN "COM... " AS #f

QUT m,n
POKE m,n

PRINT list of expressions

READ variable list

REM remark
RESTORE line

RESUME

RETURN
STOP

TIMES$ = x$
TIMER

WAIT

WEND

WHILE

Branches to a subroutine when a character is received
on the specified serial port.

Branches to a subroutine when a BASIC error ocours.
Branches to subroutine at list item n.

Branches to statement at list item n.

Selects or creates a file in the RAM disk (LC4 only).

Opens a communications port and assigns it to
logical file 1.

Outputs the byte n to a LC2/LC4 /O location m.
Puts byte n into memory at location m.

Writes the list of expressions to the host
communications port,

Retrieves information from the data list set up
by the DATA statement.

Includes remark in program.
Resets the DATA pointer to beginning of list.

Continues program execution after an error recovery
routine is performed.

Returns from subroutine.

Stops program execution, prints a break message, and
returns to command level,

Used to set the system time.

Returns a number indicating number of seconds
since midnight.

Suspends execution of a program while monitoring
the status of an /O port (L.C4 only).

Closes a WHILE... WEND loop.

Statements within a loop will execute while
expression remains true,

Functions

The LC2/LC4 BASIC contains many built-in functions which are listed below. These functions can be
grouped into two separate categories: numeric functions and string functions. Numeric functions return
a numeric result and string functions return a string result. For a complete description, refer to the
"LC2/l.C4 Commands, Statements, And Functions" section.

Numeric Functions

FUNCTIONS RESULT

ABS({x) Returns the absolute value of x,

ASC(x$) Will return the ASCI code of the first character in x3$.
CINT(x) X is converted to an integer by rounding.

COS(x) Returns the cosine of angle x (in radians).

EQF (fifenum)

Indicates an end of file condition (LC4 only).

ERL Returns the line number associated with an error.

ERR Returns the error number associated with an error.

EXP(n) Calculates the exponential value of an expression.

FIX(x) Truncates x to an integer.

FRE{x) Returns the amount of free space in memory not currently
in use by BASIC,

INP(x) Reads a byte from LC2/LC4 IfO location x.

INT{x) Returns the largest integer which is less than or equal to x.

LOC(D) Returns the number of characters in the specified
communications buffer.

LOF(f) Returns the number of free bytes in the specified
communications buffer,

LOG(n) Calculates the natural log of a numeric expression.

PEEK(m) Reads the byte in memory location m.

SING) Returns the sine of angle x (in radians).

SQR({x) Returns the square root of x.

VAL(x$) Returns the numeric value of the string x.

VARPTR(variable) Returns the address in memory of variable.

String Functions

FUNCTIONS RESULT

CHRS$(}) Returns the character with ASCIl code x.
DATE$ Returns the system date.

HEX$(n) Returns a string representing the hexadecimal

value of the decimal argument.

INKEY$ Reads a character from the host serial communications port.
INPUTS(n,#f) Reads n characters from the specified logical device or file,
INSTR(n,x$,y%$) Searches for a substring within a string.

LEFT$0:S,n) Returns the left-most n characters of x$.

LEN(x$) Returns the number of characters in x$.

MID$(x$,m,n) Returns the requested part of a specified string.
RIGHT$(x3,n) Returns the right-most n characters of x$.

STR$(X) Converts x to a string value.

TIMES Returns the time from the L.C2/LC4 real-time clock.

LC2/LC4 BASIC

COMMANDS, STATEMENTS, & FUNCTIONS
ABS Function

Purpose:

Returns the absolute value of an expression.

Version:
LC2, LC4

Format:
v=ABS(x)

Comments:

X may be any numeric expression. The absolute value of an expression will always
evaluate to a positive number or zero.

Example:

PRINT ABS (3 * (-2))
6

ok

LC2/LC4 BASIC

ADDRESS@ Variable

Purpose:

To assign an unique address to an L.C2/LC4 local controller. Used in conjunction with the
SLEEP and AWAKE commands when several L.C2/1.C4’s are multidropped on the same
communications fink.

Version:
LC2, LC4

Format:
ADDRESS®@ =Xx

X is an integer value,

Comments:

The ADDRESS@ variable is not necessary unless more than one LC2/LC4 will be
connected to the same host communication lines and the SLEEP and AWAKE commands
will be used to enable or disable individual LC2/LC4 local controllers. The ADDRESS@ = x
statement should then be issued from the host terminal to only one 1L.C2/L.C4 |ocal controller
at a time. All other LC2/LC4's should be powered down when an address is being
assigned.

The ADDRESS@ variable is a special system variable which cannot be cleared by a
CLEAR or NEW command. The only way to change this variable is to reassign it using the
ADDRESS@ = ¥ statement.

NOTE: The LC4 has hardware address jumpers to set the ADDRESS®@ value. Therefore,
the ADDRESS@ = x statement is not valid; however, the PRINT ADDRESS®@ statement
can return the L.C4 address. Please refer to the LC4 Hardware Description And Installation
manual (Form 157) on setting up the address jumpers.

Also see the AWAKE and SLEEP commands.

Example:
See the APPENDICES section on Multidropping Several LC2/LC4's.

LC2/LC4 BASIC

ASC Function

Purpose:

Returns the corresponding ASCII code for the first character of the string x$.

Version:
LC2, LC4

Format:
v = ASC(x8)

x$ may be any string expression.

Comments:

The ASC function will return a numerical value that is the ASCIl code of the first character
of he string x3. If the string x§ is null, an "lllegal function call" error will be returned.

The CHR$ function is the complement of the ASC function, and it converts the ASCIl code
to a character. Refer to the APPENDICES for a list of ASCH codes and their corresponding
characters.

Example:
100 0% = "OPTOMUX*®
110 PRINT ASC(0%)
RUN
79

ok

This example shows that the ASCI code for a capital O is 79. PRINT ASC ("OPTOMUX"
would also give the same result.

LC2/LC4 BASIC

AWAKE Command

Purpose:

To enable a single LC2/LC4 or all LC2/LC4’s on a multidropped, communications line in
order to download programs to selected units.

Version:
LC2, LC4

Format:
AWAKE [¥]

X is an integer value which indicates the address of the LC2/L.C4 unit to enable.

Comments:

If no address is specified when the AWAKE command is issued, all L.C2/LC4 units on the
same communications link which are powered up and in the sleep mode will be enabled.

The AWAKE command is normally issued from the host terminal or computer when
different programs must be downloaded to separate LC2/LC4's, Individual units can be
made active using the AWAKE command and a specified address which will match the
previously configured ADDRESS@ variable of the selected LC2/LC4.

Also see the ADDRESS®@ variable and SLEEP command.

Example:
See the APPENDICES section on Multidropping Several LC2/LC4's.

LC2/LC4 BASIC

CALL Statement

Purpose:

Calls a machine language subroutine.

Version:
LC2, LC4

Format:
CALL numvar [(variable [variable,...)]

numvar is the name of a numeric variable, The value of the variable indicates the starting
memory address of the subroutine being called.

variable is the name of a variable which is to be passed as an argument to the machine
language subroutine.

Comments:

The CALL statement is a way of interfacing machine language programs with BASIC. Even
if no variables are to be passed, a dummy variable must be specified in order for the CALL
statement to work,

Example:

100 JOE = 34210
110 CALL JOE(A,B$,C)

The variables A, B$, and C are passed as arguments to the machine language subroutine
which begins at location 34210 in memory. Calling the OPTOWARE driver:

10 OPTOWARE = 4

.:320 CALL OPTOWARE(ERRORS% ADDRESS%,COMMANDS6, POSITIONS% (0), MODIFIERS% (0),INFO%(0))

The variables ERRORS%, ADDRESS%, COMMAND%, POSITIONS%(0),
MODIFIERS%(0), and INFO%(0) are passed as arguments to the OPTOWARE driver.

The OPTOWARE driver is a machine language program which exists in the LC2/LC4
System ROM.

LC2/LC4 BASIC

CHR$ Function

Purpose:

Converts an ASCII code to its corresponding character.

Version:
LC2, LC4

Format:
v$ = CHR$(X)

Comments:

The CHR$ function returns an one character string with the corresponding ASCIl code x.
The complementary function of CHR$() is ASC(), which converts a character back to its
corresponding ASCIl code. (LC2/LC4 BASIC only uses 7 hit ASCII, the ASCII characters
from 0 to 127) Refer to the APPENDICES for a list of ASCIl codes and their
corresponding characters.

CHRS$ can be used to send both printable and non-printable characters to devices such as
terminals or OPTOMUX stations. For example, the BEL character (CHR$(7)) can be sent
to the host to beep the speaker to get the operator’s attention,

Example:

PRINT CHR$(89)+CHR$(101)+CHR$(115)
Yas

ok

LC2/LC4 BASIC

CINT Function

Purpose:

Converts a number or expression to an integer by rounding.

Version:
LC2, LC4

Format:
v = CINT(X)

X may be any numeric expression that is within the range of -32,767 to 32,767. If x is
greater than 32,767 or less than -32,767, CINT will return an overflow error.

Comments:
The CINT function converts x to an integer by rounding the fractional portion.

The main differences between CINT, INT, and FIX are as follows: CNT rounds a numbey to
the nearest integer, INT returns the largest integer less then or equal to the number, and
FiX removes the fractional part of a number without rounding.

Example:

PRINT CINT(53.89)
54

ok
PRINT CINT (-1.66)
-2

ok

Rounding selects a higher number on positive numbers and selects a more negative
number on a negative number,

LC2/LC4 BASIC

CLEAR Command

Purpose:

Clears all variables by setting numeric variables to zero and string variables to null. An
option Allows the beginning of the LC2/L.C4 BASIC program space to be specified.

Version:
LC2, LC4

Format:
CLEAR [m]

m is a byte count used to set the amount of memory space to reserve between the start of
RAM and the beginning of the BASIC program. The m option is necessary for storing
machine language routines.

Comments:

The CLEAR command will clear all variables without erasing the current program in
memory. Arrays will be undefined, strings will have a null value, and numeric values will be
set to zero after a CLEAR command is issued.

Example:

The following example clears all variables without erasing the program in memory:

CLEAR

The next example clears all variables and allocates 2K bytes of memory at the beginning of
the RAM space to store machine language routines or data, The POKE statement can
then be used to store a machine language program or data into this reserved space.

CLEAR 2048

LC2/LC4 BASIC

CLOSE Statement

Purpose:

Ends the association between a communications port or a file and the logical file number
assigned to it.

Version:
LC2, LC4

Format:
CLOSE [[#ffilenum]

fitenum is the logical file number used on the OPEN statement.

Comments:

After the CLOSE command is executed, any subsequent references to that logical file
number will be invalid. The execution of a RUN, NEW, or END statement will automatically
close any previously executed OPEN "COM... " statement. When the CLOSE statement is

executed, any characters remaining in the input buffer will be lost and the buffer pointers
will be reset.

Example:

This example ends the association of logical file #2 and the communications port. It is
assumed that this association was previously set by the OPEN "COM... " AS #2 statement.

100 CLOSE #2

LC2/LC4 BASIC

CONT Command

Purpose:

Continues execution of a program after a break.

Version:
LC2, LC4

Format:
CONT

Comments:

The CONT command can be used to resume execution of a program after a Ctrl-C has
been pressed, or a STOP statement has been executed. Execution continues at the point
where the program was interrupted. If the program was interrupted after a prompt from an
INPUT statement, execution continues with the reprinting of the prompt.

CONT can be very useful when used in conjunction with STOP for debugging purposes.
When execution is stopped, the values of variables can be examined or changed using
direct mode statements. CONT is then used to resume execution. CONT is invalid if
program lines have been added, deleted, or modified after the break.

Example:
The following example contains several STOP statements which interrupt program
execution:
100 A=30

110 PRINT A
120 A= A+10

130 STOP
140 A = A+20
150 STOP

160 A=A+50
170 PRINT A
180 STOP
RUN

30

break in line 130

ok (At this point, we issue the direct commands PRINT A and CONT)
PRINT A

40

CONT

break in line 150

ok (At this point, we again issue the direct commands PRINT A and CONT)
PRINT A

60

CONT
110
break in line 180

ok

LC2/LC4 BASIC

COS Function

Purpose:

Returns the cosine of the argument value which is expressed in radians.

Version:
LC2, LC4

Format:
v = COS(¥)

X is the angle in radians whose cosine is to be calculated.

Comments:

The result returned by the COS function is a single precision, real value. To convert a
value in degress to radians, multiply the number of degrees by 0.01745329.

Example:

This example shows, first, that the cosine of 90 degrees is equal to 2.808803E-07 (very
close to zero). Then it calculates the cosine of 90*2 or 180 degrees and the result is -1.

100 DEG2RAD = 0.01745328 ‘Cbtained From 3,141593/180
110 DEGREES = 80

120 RADIANS = DEGREES * DEG2RAD

130 PRINT COS (RADIANS)

140 PRINT COS (RADIANS*2)

RUN

2.808803E-07

-1

ok

LC2/LC4 BASIC

DATA Statement

Purpose:

Stores a list of numeric and string constants that are to be accessed by the program’s
READ statement(s).

Version:
LC2, LC4

Format:
DATA constant [,constant....]

constant may be a numeric or string constant. Expressions are not allowed in the list.
Numeric constants may be in integer, floating point, fixed point, or hex format. String
constants need only be enclosed in quotation marks when the string must contain commas,
significant leading, or trailing bianks.

Comments:

DATA statements may be placed anywhere in the program, and may contain as many
constants as will fit on a line and a program may contain any number of DATA statements.
The lists created by several DATA statements can be considered one long sequential list of
information that is accessed by the READ statement in line number order. A RESTORE
command can be used to reset the current DATA line pointer to a particular line or to the
beginning of the program. Different constant types can be contained in the DATA
statement but they must match the corresponding variable type in the READ statement or
an error will occur, DATA statements are nen-executable statements.

Example:

See examples under the READ Statement,

LC2/LC4 BASIC

DATES$ Variable And Statement

Purpose:

Used to set or read the system date.

Version:
LC2, LC4

Format:
As a variable: v§ = DATES

As a statement: DATE$=x$

Comments:
For the variable v$ = DATES:

When using DATES$ as a variable, a 10 character string of the form mm-dd-yyvy is returned.
The two digits of the month are represented by mm, the day is represented by the two
digits dd and the year is represented by the four digits yyyy.

For the statement DATES = x$:

The string expression x$ is used to set the current date. This expression can be specified
in one of the following ways:

mm-dd-yy

mm/dd/yy

mm-dd-yyyy

mm/dd/yyyy
If only one digit is given, a zero is assumed for the first digit in the month, day, or year. If
only two digits are specified for the year, the year is assumed to be 19yy.

Example:

The following example sets the date (in this case September 22, 1987), then reads it back
and displays it. Notice how LC2/L.C4 BASIC inserted a leading zero for the month and
assumed the first two digits of the year were 19.

10 DATES = "9/22/87"
20 PRINT DATES$
RUN

09-22-1987

ok

LC2/LC4 BASIC

DELAY Statement

Purpose:

Cause the BASIC to wait for a specified time.

Version:
LC2, LC4

Format:
DELAY x

X is a numeric expresion in the range 0.1 to 3276.7 which represents time in seconds for
LC2. The range of x for LC4 is from 0.01 to 42,949,669.99 seconds. A fractional value will
specify fractions of a second down to a resolution of 100 milliseconds for the LC2 and 10
milliseconds for the LC4. A value entered that is outside this range results in an "overflow"
error.

Example:

100 DELAY 57 'Wait For 5.7 Seconds

LC2/LC4 BASIC

DELETE Command

Purpose:

Deletes program lines.

Version:
LC2, LC4
Format:
DELETE [line1] [-ine2)]

ling1, line2 are valid line numbers in the range 0 to 32,767. linel is the first or only line to
be deleted. line2 is the last line to be deleted.

Comments:

DELETE will erase all the program lines specified in the range. LC2/LC4 BASIC will
always return to the command level after the DELETE command has been executed. If a
line number is specified which does not exist, an "illegal function call* error will occur.

Example:

This example deletes line 640:

DELETE 640

The next example will erase lines 50 through 200, inclusive:

DELETE 80 - 200

This last example shows how all the lines up to and including, line 137 can be erased:

DELETE -137

LC2/LC4 BASIC

DIM Statement

Purpose:

Allocates storage space in memory for array variables and specifies the maximum values
for array variable subscripts.

Version:
LC2, LC4

Format:
DiM yariable(subscript) [.variable{subscript),...]
variable is the name to be used for the array.

subscript is a numeric expression defining the maximum subscript of the array (0-255).

Comments:
When the DIM statement is executed, all the elements of the specified, numeric arrays are
set to an initial value of zero. String array elements are all set to an initial null value (zero
length).
Array variable names used without a DIM statement are assigned a maximum subscript

value of 10. Using a subscript that is greater than the maximum specified, results in an
error,

The minimum value for a subscript is always 0. Arrays are limited to one dimension.
If you try dimensioning an array more than ance, an error will occur,

Example:

The following example shows the integer array variable D%, the real array variabie E, and
the string array variable F$ being dimensioned to all contain 21 elements.

100 DIM D%(20), E(20), F${20)

LC2/LC4 BASIC

END Statement

Purpose:

Terminates execution of a program and returns to the command level.

Version:
LC2, LC4

Format:
END

Comments:

END statements may be placed anywhere in the program to terminate execution and a
program may contain multiple END statements. The END statement does not print the
"break in line" message as does the STOP statement. LC2/LC4 BASIC will always return
to the command level after an END is executed. The END statement at the end of a
program is optional,

Example:

This example ends the program if K is less than 500; otherwise, the program will branch to
line number 100.

900 IF K < 500 THEN END ELSE GOTO 100

LC2/LC4 BASIC

EOF Function

Purpose:

Indicates an End Of File condition.

Version:
LC4

Format:

v = EOF(filenum)

Comments:

filenum is the number that was specified in the OPEN filenum statement.

The EOF function returns a true (-1) if the end of the file has been reached or a false (0) if
the end of the file has not been reached. By using this function you can avoid an “input
past end" error.

The EOF function can aiso be used with a communications port that has been opened as a
logical file. A -1 is returned if the communications buffer is empty.

Example:

This example reads information from a sequential file named "ALARMS" residing in the
RAM disk area of the LC4. Values are read into the string array ALARMS until the end of
file is reached.

100
110
120
130
140
150

OPEN "ALARMS" FOR INPUT AS #1
NDX% = 0

IF EOF(1) THEN END

INPUT #1, ALARM$(NDX9%)

NDX% = NDX% + 1

GOTO 120

LC2/LC4 BASIC

ERL Variable

Purpose:

Returns the line number associated with an error.

Version:
LC2, LC4

Format:
V= ERL
Comments:

If there have been no errors since the LC2/LC4 has been powered up, ERL. will contain a
zero, otherwise ERL. will contain the line number of the last error detected.

Example:

100 ON ERROR GOTO 1000
150 PRINT EXP(X)

1000 iF ERL <> 50 THEN GOTQ 2000 'Check For Error Line
1010 X = 88.72283 'Set Maximum Value
1020 RESUME NEXT 'And Resume On Next Line

LC2/L.C4 BASIC

ERR Variabie

Purpose:

Returns the error number associated with an error.

Version:
LC2, LC4

Format:
v = ERR

Comments:

If there have been no errors since the LC2/LC4 has been powered up, ERR will contain a
zero, else ERR will contain an error vaiue. In direct mode, ERR will always centain a zero.
Refer to the APPENDICES for a complete list of error messages.

Example:

100 ON ERROR GOTO 1000
150 Z=EXP{Q

1000 IF ERR<>6 THEN GOTO 2000 'Check For Overflow

1010 IF ERL<>150 THEN GOTO 2000 'Check Line Number
1020 Z = 88.72283 'Set Maximum Value

1030 RESUME NEXT 'And Resume On Next Line

LC2/LC4 BASIC

EXP Function

Purpose:

Calculate the exponential value of the specified expression.

Version:
LC2, LC4

Format:
¥ = EXP(x)

X = can be any numetic expressicn between -88.33654 to 88.72283.

Example:

Calculate e raised to the 23,4 power:

100 X =EXP(23.4)

FILES Command

Purpose:

Displays the names of the files residing in the RAM disk area of the LC4.

Version:
LC4

Format:
FILES

LC2/LC4 BASIC

FIX Function

Purpose:

Truncates x to an integer.

Version:
LC2, LC4

Format:
v% = FIX{x)

X may be any numeric expression.

Comments:

The FIX function returns only the digits to the left of the decimal point. The major
difference between the FIX and the INT functions is that FIX does not return the more
negative number when x is negative.

The main differences between CINT, INT, and FIX are as follows: CNT rounds a number to
the nearest integer, INT returns the largest integer less than or equal to the number, and
FIX removes the fractional part of a number without rounding.

Example:

PRINT FIX(53.88)
53

ok
PRINT FIX(-1.66)
-1

ok

LC2/LC4 BASIC

FOR And NEXT Statements

Purpose:

Executes the set of instructions within the loop a specified number of times.

Version:
LC2, LC4

Format:
FOR variable = x TO y [STEP Z]

NEXT [variable][variable....]

variable is an integer or single precision variable used as a counter or index for the loop.
X is the initial value of the counter. [t may be a numeric expression.

y is the final value of the counter. It may be a numeric expression.

£ is the increment value for the counter. It may be a numeric expression.

Comments:

Program lines which follow the FOR statement are executed until the NEXT statement is
encountered. Then the counter is incremented by the amount specified by the STEP value
2. If the STEP value is not specified, a value for z is assumed to be 1. A check is then
performed to see if the value of the counter is now greater than the final value y. If it is not
greater, BASIC branches back 1o the first line after the FOR statement and the process is
repeated. [f i is greater, execution will continue with the statement following the NEXT
statement.

If the initial value of x is greater than the final value y, then a negative step value for z must
be given. If a negative step value is not given, the FOR staternent will not evaluate and
execution will continue with the statement following the NEXT statement. If a negative step
value for z is given, the counter is decremented each time through the loop, and the loop is
executed until the counter is less than the final value,

If Z is zero, an infinite loop will be created unless you provide some way 1o set the counter
greater than the final value,

Program performance will be improved if you use integer counters whenever possible and
no variable is referenced with the NEXT statement,

LC2/LC4 BASIC

FOR And NEXT Statements (Continued)

Nested Loops

FOR... NEXT loops may be nested (one FOR... NEXT loop may be placed inside another
FOR... NEXT loop). If loops are nested, each loop must have an unique variable name as
its counter. The NEXT statement for the inside loop must appear before that for the
outside loop. If nested lcops have the same end point, a single NEXT statement may be
used for all of them.

A NEXT statement of the form

NEXT varl, var2, vard

is equivalent to the sequence of statements:

NEXT _vari
NEXT varg
NEXT var3

If the variable(s) in a NEXT statement are omitted, the NEXT statement will match the most
recent FOR statement. If nested FOR... NEXT loops are used, the variable(s) on alil the
NEXT statements should be included, especially if there is any branching out of the loops.
To avoid confusion and possible errors, all branches out of a loop should be done with
GOSUB statements rather than GOTQO statements. The GOSUB statement insures that
execution will return to statements inside the loop so a proper exit out of the FOR... NEXT
loop can take place. If a premature exit must be performed, just set the counter variable to
a value larger than the specified final value y and branch to the NEXT statement (if STEP
value is positive)., For negative STEP values, set the counter variable to a smaller value
than the specified final value.

if a NEXT statement is encountered before its corresponding FOR statement, a "NEXT
without FOR" error occurs.

Example:

The following example shows how a FOR... NEXT loop is used to send a "Power Up Clear”
and a "Reset" command to a group of OPTOMUX stations. There are 10 OPTOMUX
stations with the following addresses: 2, 4, 6, 8, 10, 12, 14, 18, 20, and 22.

100 FOR ADDR%% = 2 TO 22 STEP 2

110 CMD% = 0 'Power Up Clear Command
120 GOSUB 5000 ‘Call OPTOWARE Driver
130 CMD% =1 'Reset Command

140 GOSUB 5000 'Call OPTOWARE Driver
150 NEXT

1000 END

5000 CALL OPTOWARE(ERRCQOD%,ADDR3%,CMD%,POSITIONS%(0), MCDIFIERS%({0),INFO%(0}))
5010 IF ERRCOD% < 0 THEN PRINT ERRCOD%; CMD%;ADDR%
5020 RETURN

LC2/LC4 BASIC

FRE Function

Purpose:

Returns the n

Version:
LC2, LC4

Format:

X is a dummy

Comments:

umber of bytes in memory that are not being used by BASIC.

argument

The FRE function will return the value which corresponds to the difference between the end
of the program (including the variable storage area) and the LC2/L.C4 BASIC’s symbol table
boundary. Since the variable storage area is allocated only after the RUN statement is
executed, a FRE statement issued at the beginning of a program gives a more realistic
value of free program space. Since string variables are dynamic, their initial allocation may
not correspond to the amount of memory which may be used up as the strings grow
throughout a program.

Example:

This example may not give a realistic value of free memory if a program currently in

memory uses

many variables:

PRINT FRE(0)

15752

ok

A more exact value can be found by inserting the FRE statement in the program, as

follows:
100 * Insertion of FRE statement at beginning of pregram
200 *
300 PRINT "THE AMCUNT OF FREE PROGRAM SPACE IS: ,FRE(D)
400 PRINT
800 STOP
600 " User Program Starts Here
700 PRINT "WELCOME TC MY PROGRAM"
1000 END
RUN
THE AMOUNT OF FREE PROGRAM SPACE IS: 11045
break in line 500
CONT

WELCOME TO MY PROGRAM

The actual value returned by FRE on your computer may differ from this example.

LC2/L.C4 BASIC

GOSUB And RETURN Statements

Purpose:

To branch to a subroutine and then return.

Version:
LC2, LC4

Format:

GOSUB line

RETURN

line is the number of the first iine of the subroutine.

Comments:

Subroutines may be nested (called from within another subroutine) and a subroutine may
be called any number of times. The depth to which subroutines are nested is limited only
by the available memory.

Each subroutine must have at least one RETURN statement. Upon encountering a
RETURN statement, L.C2/LC4 BASIC will branch back to the instruction following the most
recent GOSUB statement. Subroutines may appear anywhere in a program and may
contain more than one RETURN statement.

If subroutines are placed in the middle of your program, the STOP, END, or GOTO
statements may be used to direct program execution around the subroutine. Use the ON...
GOSUB statement to branch to different subroutines based on the result of an expression.

Example:

This example shows how a subroutine works. The GOSUB in line 100 calls the subroutine
in line 130. So the program branches to line 130 and starts executing statements there
until it sees the RETURN statement in line 180. At that point, the program goes back to
the statement after the subroutine call (it returns to line 110). The END statement in line
120 prevents the subroutine from being performed a second time.

100 GOSUB 130
110 PRINT "WE ARE BACK FROM THE SUBROUTINE"
120 END
130 * This is a subroutine
140 PRINT *THE SUBROUTINE"
150 PRINT 1S EXECUTING"
160 X =100
170 PRINT X
180 RETURN
RUN
THE SUBROUTINE
1S EXECUTING
100
WE ARE BACK FROM THE SUBROUTINE

ok

LC2/LC4 BASIC

GOTO Statement

Purpose:

Unconditionally branch to the specified line number.

Version:
LC2, LC4

Format:
GOTO line

fing is the line number (0 to 32,767) in the program.

Comments:

Upon execution of a2 GOTO statement, LC2/LC4 BASIC will transfer control to the
statement at line. The statement apearing at line and those following are then executed. If
a non-executable statement (such as REM or DATA) is encountered at fine, the program
continues at the first executable statement encountered after ling. if the line number does
not exist, an "unknown line" error will aceur,

The GOTO statement can also be used at the command level to re-enter a program at a
desired point.

Example:

This example illustrates a loop that increments the variable 1% until the variable equals the
value 100, Line 100 initializes 19 to start at 1, Line 110 increments the variable 1% and
line 120 prints it. Line 130 is used to check if the value has reached 100, then branches to
the end of the program. If the value is not 100, the program branches to line 110 and
continues incrementing the variable,

100 %6 =1

110 % = 1%+ 1

120 PRINT 1%

130 IF %6 = 100 THEN GOTO 150
140 GOTO 110

150 END

LC2/LC4 BASIC

HEXS$ Function

Purpose:

A string is returned which represents the hexadecimal value of a specified decimal

argument.

Version:
LC2, LC4
Format:
v$ = HEX$(x)

X is an intege

r in the range of -32,767 to 32,767.

Comments:

The HEX$ function is used to convert an integer value to a string representing the
hexadecimal equivalent of the value. If X is negative, the two’s complement is returned.

Example:

100
120
130
140
150
RUN

A% =16

B% = 2047

PRINT A%;" DECIMAL OR " HEX$(A%:);" HEX"
PRINT B%," DECIMAL OR ";HEX$(B%);" HEX"
END

16 DECIMAL OR 10 HEX
2047 DECIMAL OR 7FF HEX

ok

HIDE Command

Purpose:

Prevents a program from being listed.

Version:
LC4

Format:
HIDE

WARNING!: The only way to restore the LC4 to the normal state and allow programs to be
listed is by issuing a NEW command. The NEW command erases the program currently in

memory.

LC2/L.C4 BASIC

IF Statement

Purpose:

Allows conditional execution of a statement based on the result of an expression.

Version:
LC2, LC4

Format:
IF expression THEN statement [ELSE statement]
exprassion is any numeric expression which will normally be a relational expression.

statement is a BASIC statement or a line number of an existing program line.

Comments:

If the expression is not zero, the condition is considered true and the clause is executed
and the ELSE clause is skipped.

If the expression evaluates to zere, the condition is considered false and the THEN clause
is skipped and the ELSE clause, if any, is executed. If no ELSE clause is given, execution
continues with the next executable statement.

IF... THEN... ELSE statements may be nested. Nesting is limited only by the length of the
line. For example:

IF X >Y THEN PRINT "GREATER" ELSE IF Y>X THEN PRINT "LESS" ELSE PRINT "EQUAL"

is valid.

Example:

The following example illustrates how the IF... THEN... ELSE statement can be used for
error checking after calling the OPTOWARE driver:

100 GOSUB 1000 ‘Cell OPTOWARE Driver
110 IF ERRCOD% <> 0 THEN GOSUB 2000

900 END

1000 CALL OPTOWARE(ERRCOD%,ADDR%,CMD%,POSITIONS (0), MODIFIERS%(0), INFO%(Q)
1010 RETURN

2000 IF ERRCOD% = -1 THEN PRINT "Power Up Clear Expected"

2010 {F ERRCOD% = -2 THEN PRINT "Undefined Command"

2020 |F ERRCOD%% = -3 THEN PRINT "Checksum Error"

2100 IF ERRCOD% = -20 THEN PRINT ‘Invalid Command®
2110 IF ERRCOD% = -21 THEN PRINT "Invalid Module Position®
2120 IF ERRCOD% = -22 THEN PRINT "Data Range Error*

:'2220 IF EBRCOD% = -34 THEN PRINT *Incorrect Echo [n 4-Pass”
2230 RETURN

LC2/LC4 BASIC

INKEYS$ Variable

Purpose:

Reads a character from the host communications port (keyboard).

Version:
LC2, LC4

Format:
v$ = INKEYS

Comments:

INKEY$ will only read a single character, even if there are several characters waiting in the
communications buffer. The returned value is a null string if there are no characters, or a
one character string if a character exists.

While INKEY$ is being used, no characters are echoed back to the screen and all
characters are passed through to the program except for a Ctrl-C which stops the program,
Pressing the carriage return key in response to INKEY$ will pass an ASCIH 13 character to
the program.

Example:

The following example illustrates the use of INKEYS$ to cause a program to pause untif the
letter C (upper case c) key is pressed,

100 PRINT *Press C fo continue*
110 R$ = INKEYS
120 IF R% <> "C" GOTO 110

LC2/LC4 BASIC

INP Function

Purpose:
To read a byte from /O port x.

Version:
LC2, LC4

Format:
v = INP(X)

X is an expression which evaluates to an I/O port number in the range of 0 to 255.

Comments:

Refer to the £C2 or LC4 Hardware Description And Installation manual (Form 217 or 157)
for a list of valid I/O port numbers. INP is a complementary function to the QUT statement.

Example:

100 DARTS = INP(2)
This instruction reads a byte from port 2 and assigns it to the variable DARTS.

LC2/LC4 BASIC

INPUT Statement

Purpose:

To input data from the host port or the OPTOMUX communicaticns port,

Version:
LC2, LCa

Format:
INPUTLJ[#filenum.]["prompt”,Jvariable [.variable....]

filenum is the logical file number assigned to the communications port or file in a previous
OPEN statement. If filenum is omitted, the characters in the host communications buffer
are read,

prompt is a string constant or expression which will be sent out the host port to prompt for
the desired input. A prompt may be specified only if a filenum is not given.

variable is the name of a string or numeric variable or of an array element for which values
are to be input.

Comments:

Upaon executing the INPUT statement, a question mark is displayed to indicate that it is
waiting for an input. If a "prompt" is used, the prompt string is displayed before the
question mark. If a comma is used instead of a semicolon after the prompt string, the
question mark is suppressed.

The data entered in response to the INPUT statement must be of the same type as the
specified variable. If several items are to be entered, they must be separated by commas
and the number of items entered must match the number of variables in the list.

A response to the INPUT statement with too many items, too few items or the wrong type
of value causes LC2/LC4 BASIC to issue the message "?Redo from start". If INPUT is
immediately followed by a semicolon, the carriage return is suppressed after the input data
is entered.

LC2/LC4 BASIC

INPUT Statement (Cont.)

Example:

100 INPUT R

110 PRINT "The number is; *; R
120 END

RUN

2

(The computer is waiting for a response}

7100
The number is: 100

ok
In this next example, a prompt is used and the question mark suppressed.
100 INPUT "Please enter a number: *, A
110 PRINT "The number is: *; A
120 END
AUN
Please enter a number: 102
The number is: 102

ok

LCZ/LC4 BASIC

INPUT$ Function

Purpose:

Returns a string of x characters, read from the host port, a currently open device, or file
buffer.

Version:
LC2, LC4

Format:
v$ = INPUTS(x[, [#filenum])

X is the number of characters to be read from the buffer.

filenum is the logical file number assigned to the device or file in a previous OPEN
statement. If filenum is omitted, the characters in the host communications buffer are read.

Comments:

The INPUT$ function allows all characters to be passed to L.C2/LC4 except for a Cirl-C
which is used to interrupt the execution of INPUT$ function, A carriage return does not
need to follow the characters sent in response to the INPUTS$ function. If a carriage return
character is read by the INPUT$ function, it will be treated just like any other character.

Example:

The following example illustrates the use of the INPUT$ function for reading a single
character from the host computer or terminal.

100 PRINT "ENTER YOUR FESPONSE (Y/N): *
110 X$ = INPUTS(1)

120 IF X% = “Y" THEN 500

130 IF X$ = "N* THEN 700 ELSE 100

The next example uses the INPUTS$ function to accept a response from a device such as
the Maple Systems, MAP-522 terminal connected to the OPTOMUX network. The example
assumes that the OPTOMUX port was previously opened using the OPEN COM..
statement,

100 X$ = INPUT$(LOC(1),#1)
110 PRINT *MAP 522 RESPONSE: *X$

LC2/L.C4 BASIC

INSTR Function

Purpose:

This function searches for the cccurence of a substring within a string. The position were
the substring is found is returned.

Version:
LC2, LC4

Format:
index = INSTR([n], x$, y$)

n - is an optional starting index into the string x$. n is a numeric expression in the range 1
to 255.

x$ - is the string variable to be searched.
y$ - is the substring to search for.

If n is greater than the length of x$ or the substring y$ cannot be found, INSTR will return a

0. If the substring y$ is a null string, the value n will be returned (a 1 will be returned if n
was not specified).

Example:
This exampie finds the end of a line when multiple lines are received using the INPUTS
function:
100 A$ = INPUT$(LOC{0), O) 'Get All From Host Port
110 INDEX% = INSTR({ A$, CHR$(13)) "Lock For Carriage Return

120 IF INDEX% = 0 THEN GOTO 1000

LC2/LC4 BASIC

INT Function

Purpose:

Returns the nearest integer that is smaller than or equal to x.

Version:
LC2, LC4

Format:
¥% = INT(x)

X is any numeric expression, usually real.

Comments:

The main differences between CINT, INT, and FIX are as follows: CINT rounds a number to
the nearest integer, INT returns the |argest integer less than or equal to the number, and
FIX removes the fractional part of a number without rounding.

Example:

PRINT INT(53.89)
53

ok
PRINT INT{-1.66)
-2

ok

Notice that INT truncates positive numbers but rounds negative numbers towards a greater
negative value.

LC2/LC4 BASIC

KILL Command

Purpose:
Deletes a file from the RAM disk area of the LC4.

Version:
LC4

Format:
KILL filespec

filespeg can be any 12 printable characters enclosed in quotes or the string "**", If "**" is
used, all files on the RAM disk will be deleted, No wildcard characters are allowed in the

filespec.

Example:
The foliowing line deletes a file named TEMPS.ZONE1 in the RAM disk area of the LC4.

KILL *TEMPS.ZONE1"

LC2/LC4 BASIC

LEFT$ Function

Purpose:

Returns a substring which consists of the left-most n characters of string x$.

Version;
1.C2, LCa

Format:
v$ = LEFT(x$, n)
X3 is any string expression.

n is a numeric expression which specifies the number of left-most characters to be
returned. n must be in the range 0 to 255,

Comments:

If n is greater than the length of the string x$, the entire string x$ is returned. If n = 0, the
null string {length zero) is returned.

Example:

In this example, the LEFT$ function is used to extract the first 7 characters in the string

INFO3
100 INFOS$ = *OPTO 22, HUNTINGTON BEAGH, CALIFORNIA"
110 NAMES = LEFT$(NFO$,7)
120 PRINT NAME$
RUN
OPTO 22

ok

LC2/LC4 BASIC

LEN Function

Purpose:

Returns the number of characters in the string x$.

Version:
LC2, LC4

Format:
v% = LEN(x$)

X3 is any string expression.

Comments:

The number of characters returned includes non-printable characters and blanks.

Example:

100 X$ = "NEWPORT BEACH, CA*
110 PRINT LEN{X$)

RUN

17

ok

There are 17 characters in the string "NEWPORT BEACH, CA", because the comma and
the blank are counted.

LC2/LC4 BASIC

LET Statement

Purpose:

The value of an expression is assigned to a specified variable.

Version:
LC2, LC4

Format:
[LET] variable = expression

variable is a string or numeric variable or array element which is to receive the vaiue
determined by expression.

expression is an expression which LG2/L.C4 BASIC evaluates and assigns to variable. The
type of the expression (string or numeric) must match the type of the variable, or a "type
mismatch" error will oceur.

Comments:

The use of the word LET is optional. The equal sign is sufficient when assigning a value to
variable.

Example:

This example assigns the value 100 to the variable XYZ. It then assigns the value 110,
which is the value of the expression XYZ + 10, to the array variable F(1). The string
"BOARD 1" is assigned to the variable MUXS.

100 LET XYZ =100
110 LETF{1) = XYZ + 10
120 LET MUX$ = ‘BOARD 1*

The same statements could also have been written:
100 XYZ = 100

110 F{1) = XYZ + 10
120 MUXS$ = "BOARD 1"

LC2/LC4 BASIC

LINE INPUT Statement

Purpose:

Reads an entire line (up to 255 characters) from the host port, ignoring commas or other
delimiters,

Version:
LC2, LC4

Format:
LINE INPUT [;]["prompt";] stringvar

prompt is a string constant that is sent to the host before any input is accepted. In order
for a question mark to be printed, it must be part of the prompt string.

stringvar is the name of the variable (string or string array element) to which the incoming
line will be assigned. All input from the end of the prompt to a carriage return will be
assigned to stringvar.

Comments:

The LINE INPUT statement works identically to the INPUT statement but also allows
delimiters and control charactes to be passed to the variable. The host can exit the LINE
INPUT statement by passing a Ctrl-C. Upon receiving the Ctrl-C, LC2/LC4 BASIC will
return to the command level and display "ok". A CONT can then be issued to resume
execution at the LINE INPUT statement.

Example:

This example prompts the host to send a list of messages to be stored in an array, then
waits for each message line to be sent by the host. Each line is assigned to one element
of the array ERRMSG$ and each line must be followed by a carriage return.

100 DIM ERRMSGS$(15)

110 LINE INPUT *Send list of 16 error messages: *; ERRMSGS$(0)
120 FORIB =1TO 15

130 LINE INPUT ERRMSG$(1%)

140 NEXT

LC2/LC4 BASIC

LIST, LLIST Command

Purpose:

Lists the program currently in memary to the host port or to the OPTOMUX communications
port when LLIST is used.

Version:
LC2, LC4

Format:
LIST [line1] [-[line2]]
LLIST [line1] [-fline2]]

finet, line2 are valid line numbers in the range 0 to 32,767. lingl is the first line to be
listed, ling2 is the last line to be listed.

Comments:

If the line range is omitted, the entire program is listed.
When the dash (-) is used in a line range, three options are available:

If only linel is given, then all the lines starting at Jinel. until the end of the
program are listed.

If only lineg is given, then all the lines starting from the first iine in the
program, until and including line2, are listed.

If both line numbers are specified, all lines from Jine1 through line2,
inclusive, are listed.

LLIST routes the program listing to the OPTOMUX communications port instead of the host
port. This is useful for making printed listings when a printer is attached to the OPTOMUX

serial port.
Example:
LIST Lists the entire program on the screen.
LIST 1000- Lists all lines from 1000 through the end of the program.
LIST -2000 Lists all lines from starting at 0 to 2000, inclusive.

LIST 100-1520 Lists all lines from 100 fo 1520, inclusive.

LC2/LC4 BASIC

LOC Function

Purpose:

Returns the number of charcters in the OPTOMUX input buffer.

Version:
LC2, LC4

Format:
¥ = LOCfilenum)

filenum is the logical file number used when the OPTOMUX communications port was
opened.

Comments:

The LOC function returns the number of characters in the OPTOMUX input buffer that are
waiting to be read. The input buffer can hold up to 255 characters.

Example:

The following example waits until there are 112 characters in the OPTOMUX input buffer,
then assigns the contents of the buffer to the variable MESSGS. The example assumes
the OPTOMUX part has been previously opened as logical file 1.

100 IF LOC(1) >= 112 THEN GOTO 120
110 GOTO 100
120 MESSGS = INPUTS{112,#1)

LC2/LC4 BASIC

LOF Function

Purpose:

Returns the number of free space (bytes) in the communications input buffer.

Version:

LC2, LC4

Format:
v = LOF(filenum)

filenum is the logical file number used when the communications port was opened.

Comments:

The LOF function returns the amount of free space calculated to be 255 minus
LOC(filenum). This function is useful for checking when the OPTOMUX input buffer is

almost full.

Example:

The following example uses the LOF function to indicate when the input buffer is full so the
contents of the buffer can be assigned to several variables using the INPUT$ function. The
example assumes that the OPTOMUX port was previously opened as logical file #1.

100
110
120
130

IF LOF (1) » 0 THEN GOTO 100
FORI% =1TO 4

MESSG$(36) = INPUT$(84,4#1)
NEXT

LC2/LC4 BASIC

LOG Function

Purpose:

Calculates the natural log of a numeric expression.

Version:
LC2, LC4

Format:

¥y = LOG(x)

X Is any numeric expression greater than zero.
Example:

Print the natural logs of ali the integers between 1 and 100.

100 FOR 1% =1 TO 100
110 PRINT "Log of *;1%;"is *; LOG(I%)
120 NEXT

MID$ Function

Purpose:

Returns the requested part of a specified string.

Version:
LC2, LC4

Format:
v$ = MID$ (x$, m, [0])
%% is any string.
m is an integer expression in the range of 1 to 255.
N is an integer expression in the range of 0 to 255.
This function returns a string of length n beginning with the m character. If n is omitted or

is less than the remaining number of characters, the remaining right-most characters are
returned. If nis zero or n is greater than LEN(x$), then MID$ will return a null string.

Example;

This example grabs the OPTOMUX address from a command string.

100 COMMS$ = MID$(OCMDS, 2, 2) 'Get Address From String
110 IF COMM$ <> "FF' THEN GOTOQ 1000 'If Not Address 255

LC2/LC4 BASIC

NEW Command

Purpose:

The program currently in memory is deleted and all variables are cleared.

Version;
LC2, LC4

Format:
NEW

Comments:

The NEW command must be issued prior to entering a new program or after power up with
no existing program in memory. LC2/LC4 BASIC will aiways return to the command level
after the NEW command is executed,

Example:
The program memory will be deleted and all the program variables are cleared.
NEW

ok

LC2/L.C4 BASIC

ON COM(n) GOSUB Statement

Purpose:

Branches to a subroutine when a character is received on the specified serial port.

Version:
LC2, LC4

Format:
ON COM(n) GOSUB line
A is a numeric expression which specifies the serial port to trap on.

line is the beginning line number of the subroutine to branch to when a character is
received on port n.

Comments:

In order to activate the ON COM statement, a COM(n) ON statement must be used to
activate and trap the communications interrupt. After COM(n) ON and if a non-zero line
number is specified in the ON COM(n) GOSUB statement, then at the end of executing a
program line, BASIC will check to see if any characters have been received in the specified
port. [f so, BASIC will perform a GOSUB to the specified line.

Issuing a COM(n) OFF statement will disable the ON COM(n) GOSUB feature and further
characters will not cause an ON COM interrupt.

If a COM(n) STOP statement is used after a COM(n) ON statement, the ON COM(n)
GOSUB feature will be disabled; but if a character is received, the interrupt will be held
pending until a COM(n) ON statement is executed. Once the COM(n) ON statement is
executed, the subroutine of the ON COM(n) GOSUB statement will be executed if the
interrupt was pending.

When the COM feature interrupts and branches to the subroutine, an automatic COM(n)
STOP is executed,

Acceptable COM port numbers are 0 through 3. COMO is the host port (which is opened
by default). COM ports 2 and 3 are on the EX2 daughter card and can only be accessed
when using a LC4 with an EX2 daughter card installed. The LC2 has only COM port
number 0 and 1 available.

Example:
100 ON COM(1) GOSUB 2000 'Specify Interrupt line
110 COM(1) ON 'Enable ON COM Interrupt
1'000 A$ = INPUT${LOC(1),1) 'Read Received Character

1010 RETURN 'Return To Calling Subroutine

LC2/LC4 BASIC

ON ERROR GOTO Statement

Purpose:

Branches to a subroutine when a BASIC error occurs.

Version:
LC2, LC4

Format:
ON ERROR GOTO line

line is the line number of the beginning of the subroutine to branch to when a BASIC error
has been detected.

Comments:

While BASIC is in the error trapping routine, error trapping is disabled. Error trapping will
be restarted after a RESUME statement is executed.

ON ERROR trapping can be disabled by executing an ON ERROR GOTO 0 statement.

Example:
This example tests to see if an overflow error has occurred.

100 ON ERROR GOTO 1000

.1000 IF ERR <> 8 THEN GOTO 1030 'Go Around [f Not Over
1010 ANSWER% = 32767 'Set Highest Integer
1020 RESUME NEXT 'And Do Next Line

LC2/LC4 BASIC

ON... GOSUB And ON... GOTO Statements

Purpose:

Allows branching to one of several specified line numbers depending on the value of an
expression.

Version:
LC2, LC4

Format:
ON n GOSUB line [ling,...]

ON p GOTO line [line, ...]

n is a numeric expression in the range of 0 to 255 which is rounded to an integer value if
necessary.

line is the line number of the line to branch to.

Comments:

The value of n is used in determining which line number in the list the program will branch
to. If the value of n were to evaluate to 4, the program would branch to the fourth line
number in the list. [f n evaluates to 0 or larger than the number of items in the list, then
LC2/LC4 BASIC will continue executing at the program line which follows the ON... GOTO
or ON... GOSUB statement. If n is outside the specified range, an "illegal function call”
error will occur.

The ON.. GOSUB statement will branch to a subroutine that must have a RETURN
statement to return execution to the line following the ON... GOSUB statement.

Example:

The first example will branch to fine number 200 if the expression X*3/5 evaluates to 1,
branch to fine 300 if expression equals 2, line 400 if expression equals 3, and line 500 if
expression equals 4. If X*3/5 is equal to zero or greater than 4, but still within the range of
1 to 255, then the program will continue executing with the next statement.

100 ON X*3/5 GOTCQ 200, 300, 400, 500

The next example shows the use of the ON... GOSUB statement.

1000 ON P GOSUB 3000, 4000, 5000
3000 * Start Of Subroutine For P=1

3999 RETURN

LC2/LC4 BASIC

ON KEY(n) Statement

Purpose:

Branches to a subroutine at a specified line when a trapped character is received at the
host communications port.

Version:
LC2, LC4

Format:
ON KEY(x3) GOSUB line

x$ is a string expression of which the first character is used to compare with any characters
received at the host communications port.

fine is the line number of the beginning of the subroutine to branch to when an incoming
character matches the first character in x$.

Comments:

The ON KEY function can trap up to 16 characters or "levels" using individual ON KEY (x3)
GOSUB statements to specify each character and its associated subroutine. All standard,
7 bit ASCII characters can be used for trapping.

In order to activate the ON KEY function, a KEY(x3) ON statement must first be used. A
KEY(x8) ON statement is needed for each character that is to be trapped. After the
KEY(x8) ON statement is executed and a line number is specified in the ON
KEY... GOSUB statement, LC2/LC4 BASIC will branch to that line number whenever a
character which is equal to the first character in x8 appears at the host communications
port. LC2/LC4 BASIC will branch to the subroutine only after the current line is executed.

If a KEY(x$) OFF statement is executed, no trapping takes place for the specified
character, Even if the character appears at the host communications port, the event is not
remembered.

If a KEY(x$) STOP statement is executed, no trapping takes place for the specified
character. However, if the first character specified in x$ appears at the host
communications port, the event is remembered, so an immediate trap will occur when
KEY(x3) ON is executed.

When a branch is made to the subroutine after a character is matched, an automatic
KEY({x$) STOP is executed so recursive traps can never take place. The RETURN from
the subroutine automatically does a KEY(x$) ON unless an explicit KEY(x$) OFF was
performed inside the subroutine.

LC2/LC4 BASIC

ON KEY(n) Staiement (Continued)

Example:

The following is an example of a trap routine for the characters "C", "A", and ">", Notice
how variables with values having more than one character can be used. Only the first
character is used for trapping.

100
10
120
130
140
150
160
170

1000
1509
2000
2599
3000

3589

ON KEY("C") GOSUB 1000
KEY{"C") ON
CHARS$ = *>Hello*

ON KEY(CHARS) GOSUB 2000
KEY{CHARS) ON

B$ = IAI

ON KEY(B$) GOSUB 3000
KEY{*A") ON

* Routine For "C" At Host Fort

RETURN

" Routine For *>" At Host Port

RETURN

* Routine For "A® At Host Port

RETURN

LC2/L.C4 BASIC

ON TIMER Statement

Purpose:

Branches to a subroutine when a specified period of time has elapsed.

Version;
1.C2, LC4

Format:
ON TIMER (n) GOSUB line

0 is a numeric expression in the range of 0.1 to 3276.7 for the LC2 and 0.01 to
42,949,669.99 for the LC4 which represents time in seconds. A fractional value will specify
fractions of a second down to a resolution of 100 milliseconds for the LC2 and 10
milliseconds for the LC4. A value entered that is outside this range results in an ‘illegal
function call" error.

line is the beginning line number of the subroutine to branch to whenever n seconds has
elapsed.

Comments:

In order to activate the ON TIMER function, a TIMER ON statement must be used. After a
TIMER ON statement is executed and a line number is specified in the ON TIMER...
GOSUB statement, LC2/LC4 BASIC will branch to that line number after the specified time
has elapsed.

Although the minimum time that can be specified is 100 ms (n = 0.1) for the LC2 or 10 ms
(n=0.01) for the LC4, a large ON TIMER subroutine may take longer than 100 (or 10)
milliseconds to execute. The result is that after the routine is finished, a previously pending
ON TIMER interrupt will cause the routine to execute again. LC2/LC4 will then be in a loop
which constantly executes the ON TIMER subroutine and nothing else. Therefore, one
must use care when deciding the amount of time to specify for servicing the ON TIMER
subroutine.

issuing a TIMER OFF statement will disable the ON TIMER GOSUB feature and further
timing interrupts are not remembered.

if a TIMER STOP statement is used after a TIMER ON statement, the ON TIMER GOSUB
feature will be disabled but timing activity continues and interrupts are held pending until a
TIMER ON statement is executed. Once the TIMER ON statement is executed, the
subroutine of the ON TIMER GOSUB statement will be executed if the interrupt was
pending. The TIMER ON statement resets the ON TIMER down counter to its initial valvue.

When the timer feature interrupts and branches to the subroutine, an automatic TIMER
STOP is executed so that recursive interrupt handling never takes place. The RETURN
from the interrupt service routine does an effective TIMER CONTINUE (the timer is not
reset to initial value), unless and explicit TIMER OFF was performed inside the subroutine.

LC2/LC4 BASIC

ON TIMER Statement (Continued)

Example:

The following example illustrates how an OPTOMUX station can be polled every 400
milliseconds to retrieve alarm status conditions. The OPTOMUX station is assumed to be a
4 point, discrete /O board at address 255. If an alarm is active, FAULTDEV will contain a
value other than 0.

100
110

500
510
820
530
540
550

ON TIMER {0.4) GOSUB 500
TIMER ON

* Timer Interrupt Servica Routine

ADDR3% = 255

CMD% = 64

CALL OPTOWARE (ERRCOD%, ADDR%%, CMbD%, POS%(0), MOD95(0), INFC96(0))
FAULTDEV = INFO%(0) AND &HOF

RETURN

LC2/LC4 BASIC

OPEN Statement

Purpose:

Selects or creates a file in the RAM disk area of memory for access.

Version:
LC4

Format:
OPEN filespec FOR mode AS [#lfilenum
filespec can be any 12 printable characters enclosed in quotes.

mode is one of the following:

APPEND specifies sequential output mode with the
file pointer positioned at the end of the file.

INPUT specifies sequential input mode.

OQUTPUT specifies sequential output mode.
mode is a string constant not enclosed in quotation marks.

filenum is an integer expression from 1 to 7.

Comments:

The OPEN statement only supports sequential access. The same file may be opened
under different filenums for INPUT, but can only be opened once for OUTPUT or APPEND.
A file may be opened for INPUT and OUTPUT (or APPEND) using different filenums only.

Opening a file for OUTPUT does not erase the file, but positions the file pointer at the start
of the file. A subsequent write to the file will overwrite the original data, To completely
erase a file see the KILL command. If a file opened for OUTPUT or APPEND does not
exist, a new file will be created. If a file opened for INPUT does not exist, a "file not found"
error will occur.

To write to a file, use the PRINT # command; to read data from a file, use the INPUT$ or
the INPUT # statements.

The LC4 COM port 0 has a default filenum of 0. This filenum is not accessible with the
OPEN statement but indicates that COMO is already open by default. The COM port 0 can
never be closed.

Example:

In this example, a file called CONFIG.FILE is created and the values of the array
CONFIG% are stored.

100 QPEN "CONFIG.FILE" FOR OUTPUT AS #1
110 FORB:=0TOS9

120 PRINT #1,CONFIGS6(%)

130 NEXT

140 CLOSE #1

LC2/LC4 BASIC

OPEN "COM... " AS #f Statement

Purpose:

Opens a communications port and assigns it to a logical file number.

Version:
LC2, LC4

Format:
OPEN "COMn:[speed] [,parity] [.data] [.stop]" AS [#] filenum

n is the number of the communications port to open. When using a LC2/LC4, the host port
is considered port number 0 and the OPTOMUX port is port number 1. The LC4 also
supports port numbers 2 and 3 when an EX2 daughter card is installed.

speed this parameter is used by IBM/Microsoft BASIC to set the baud rate of the
communications port. However, since the baud rate setting for LC2/1.C4 is defined by
hardware jumpers, this parameter is ignored by LC2/L.C4 BASIC.

parity is a one character constant which can be one of the following characters:

E: EVEN Parity bit is always even.
N: NONE No parity is used.
G: ODD Parity bit is always odd.

data this is a number indicating the number of transmit and receive data bits. Acceptable
values are 5, 6, 7, or 8. The LC4 only allows 7 and 8 data bits on COMO and COM1.

stop this number indicates the number of stop bits in the character. Acceptable values are
a1 or2. Selecting 5 data bits and 2 stop bits will result in an actual stop bit value of 1 1/2.

filenum is an integer expression which evaluates to a logical file number. This number is
then associated with the specified communications port for as long as it is open. Multiple
filenums can be associated with the same serial port at one time. A user filenum can be
any value from 1 to 7. Note that on power up, the host port is automatically opened with a
filenum of O (this filenum cannot be closed by the user). The default values for the
OPTOMUX port are: No parity, 8 data bits, and 1 stop bit.

Comments:

The OPEN "COM... " statement initializes the communications port when other than standard
type devices are attached to this port. On power up, all serial communications ports are set for
no parity, 8 data bits, and 1 stop bit. 1BM/Microsoft BASIC's line signal options CS, DS, CD,
and LF are not used by [.C2/LC4 and, if present, are ignored. When specifying the RS option,
the OPTOMUX port will only be enabled when being written to. The RS option is necessary
when multiple hosts are connected to LC2/LC4. If RS is not specified, the port will aiways be
enabled. The communications ports may be assigned to more than one file number at a time.

Example:

The OPTOMUX communications port is assigned to logical file number one (1). The baud
rate is determined by the hardware jumpers on the LC2/L.C4 board and there will be no
parity, eight data bits, and one stop bit.

100 OPEN "COM1:19200,N,8,1" AS #1

LC2/LC4 BASIC

OUT Statement

Purpose:
Sends a byte to a L.C2/1.C4 output location.

Version:
LC2, LC4

Format:

OUTm n
m is a numeric expression for the port number in the range of 0 to 255,
1 is a numeric expression for the data to be transmitted in the range of 0 to 255.

Comments:
OUT is the complementary statement to the INP function. Refer to the LC2 and LC4

Hardware Description and Installation manuals (Forms 217 or 157) for descriptions of valid
I/O addresses.

Example:

This sends the value 0 to output port 16.

100 OUT 16,0

LC2/LC4 BASIC

PEEK Function

Purpose:

Returns a byte which is stored at the specified memory location.

Version:
LC2, LC4

Format:

v = PEEK(n)
o this is an integer in the range -32,768 to 32,767 (0 to FFFF Hex) which indicates the
address of the memory location to be read.

Comments:
The returned value will be an integer in the range 0 to 255,

PEEK is the compiementary function to the POKE statement.

Example:

The following example calculates an address by summing the variables VAL1%, VAL2%,
and VAL3% and putting the contents of that location in the variable SUMBAL.

100 VAL1% = 3021

110 VAL2% = 104

120 VAL3% = 1000

130 SUMVAL = PEEK(VAL1% + VAL2% + VAL3%)

LC2/LC4 BASIC

POKE

Purpose:

Writes the specified byte into the specified memory location.

Version:
LC2, LC4

Format:

POKE m,n

m is the address of the memory location where the data is to be written and must be in the
range of -32,768 to 32,767 (0 to FFFF Hex).

n is the byte of data to be written to location m and must be in the range of 0 to 255.

Comments:

POKE and PEEK are complementary functions and are useful for loading machine
language routines, passing parameters to and from these machine language subroutines or
for data storage.

WARNING!: BASIC does not do any checking on the address, so POKEing around in
BASIC’s stack, BASIC's variable area, or your BASIC program may cause your LC2/L.C4 to
behave erratically.

POKEIing into the memory locations where the ROMSs reside will pot cause any changes in
memory. These devices are "read only" and cannot be written to. The ROM space exists
from 0 to 7FFF Hex 0 the LC2 and LC4. The RAM space starts from 8000 to FFFF Hex.

Example:

100
110
120
130
140

VAL1% = &HB0O1

VAL2% = 38

DATAVAL = PEEK (VAL1%)
ADDRVAL = VAL1% + VAL2%
POKE ADDRVAL, DATAVAL

LC2/LC4 BASIC

PRINT, LPRINT Statement

Purpose:

To write data to either the host communications port or a logical device or file.

Version:
LC2, LC4

Format:
PRINT[[#]filenum,][list of expressions][;]
LPRINT [list of expressions][;}

fist of expressions is a list of one or more valid numeric or string expressions separated
and/or terminated by a comma or semicolon delimiter.

filenum is the logical file number assigned to the file or logical device opened with a
previous OPEN statement. If filenum is omitted, the characters printed are sent to the host
port.

Comments:

A semicolon (;) causes the next value to be printed immediately after the last value. A
semicolon at the end of an expression list suppresses the carriage return.

A comma (,) causes an ASCIi TAB character to be output. When printed to the host or to a
printer, the TAB character will move the print "cursor' to the next tab column (normaily
located every 8 character positions), A comma at the end of a list suppresses the carriage
return and moves the print “cursor” to the next tab column.

NOTE: LC2/LC4 BASIC requires the use of a semicolon or comma to separate variables.
Use of spaces as delimiters will generate an error message. This is a deviation from
IBM/Microsoft BASIC.

LPRINT is identical to PRINT except the output is routed to the OPTOMUX communications
port instead of the host poti.

Example:

100 PRINT "HELLO"

10 PRINT * WORLD"

120 PRINT 242, 3+4, 56, "HA HA HA"
RUN

HELLO WORLD

4 7 30 HA HA HA

LC2/1.C4 BASIC

READ Statement

Purpose:

Retrieves information from the data list set up by the DATA statement (also see the DATA
statement).

Version:
LC2, LC4

Format:
READ variable [variable....]

variable is a numeric or string variable or array element which will receive the value read
from the DATA list.

Comments:

Values in a DATA statement are assigned to the variables in the READ statement on a
one-to-one correspondence. The variables in the READ statement can be numeric or string
types but must match the type of values in the DATA statement being read, otherwise, an
error will ocour,

One or more DATA statements may be accessed in order by a single READ statement. If
there are more variables in the READ statement than there are elements in the DATA
statement, an “out of data" error will occur. Having fewer data elements in the DATA
statement than there are variables in the READ statement will cause any subsequent
READ statements to begin reading data at the first unread element. Extra elements in the
DATA statement are ignored if there are no more READ statements in the program.

The RESTORE statement allows the data pointer to be placed at the beginning of the first
DATA statement in a program or at a DATA statement at a specified line (also see the
RESTORE statement).

Example:

This program reads string and numeric data from the DATA statement in line 120, Notice
that quotation marks are not needed arcund Samuel. Quotations marks are needed around
*Jones," because of the comma.

100 PRINT "LAST®, "FIRST’, "PHONE"
110 READ L$, F§, P

120 DATA "Jones," Samuel,5551934
130 PRINT L$,F§,P

RUN
LAST FIRST PHONE
Jones, Samuel 5551934

ok

LC2/LC4 BASIC

REM Statement

Purpose:

Inserts comments in a program.

Version:
LC2, LC4

Format
REM remark

remark may be any sequence of characters.

Comments:

A REM statement tells LG2/LC4 BASIC to disregard any characters after the REM and up
to the end of the line. The characters are stored in memory for listing purposes, but are
non-executable.

REM statements may be placed anywhere in a program and may be branched to using the
GOTO or GOSUB statements. In such a case, execution will continue with the first
executable statement after the REM statement.

A single quotation mark may be used in place of the REM statement. If a REM statement
is placed in a line containing other program statements, the REM statement must be the
last statement on the line.

Example:
100 REM Calculate Speed
110 HOURS = 1 REM Initialize HOURS
120 INPUT *Distance{miles} is: ";DISTANCE 'Prompt For Distance
130 INPUT “Fime (hours) is: ;HOURS ‘Prompt ForTime

140 REMNow Caleutate And Print The Speed
150 PRINT "Spoed (mph) is: *; DISTANCE/HOURS

LC2/LC4 BASIC

RESTORE Statement

Purpose:

Allows DATA statements to be reread from a specified line.

Version:
1L.C2, LC4

Format

RESTORE [ling]

line is the line number of a DATA statement in the program.

Comments:

The RESTORE statement will reset the DATA pointer to the first DATA statement in the
program so it can be accessed by a subsequent READ statement. i line is specified, the
next READ statement accesses the first item in the DATA statement at the specified line. If
a DATA statement does not exist at line, the DATA pointer is set to the first DATA
statement encountered after line.

Example:

100
110
120
130
140
RUN

READ X,Y.Z
RESTORE

READ T,U,V

DATA 42, 78, 31
PRINT X, Y; Z; T; U; V

427831 4278 31

ok

The RESTORE statement in line 110 resets the DATA pointer to the beginning, so that the
values that are read in line 130 are 42, 78, and 31.

LC2/LC4 BASIC

RESUME Statement

Purpose:
Continues program execution after an error recovery routine is performed.

Version:
LC2, LC4

Format:
RESUME [ling]

Comments:
line can be any of three values: 0, the actual line to perform, or the word NEXT.
RESUME or RESUME 0 will resume execution at the line that caused the error.
RESUME line will resume execution at the specified line number,
RESUME NEXT will resume execution at the line following the line that caused the error.

A RESUME statement executed that is not in an error recovery routine will cause a
"RESUME without error" message to occur.

Example:

The following example is used to set a high value when an overflow condition occurs:

100 ON ERROR GOTO 1000

1000 IF ERR <> 6 THEN GOTO 4020 'Gio Around if Not Overflow
1010 ANSWER% = 32767 'Set High Limit
1020 RESUME NEXT 'Skip Error Line

LC2/LC4 BASIC

RETURN Statement

Purpose:

To exit a subroutine called with the GOSUB statement. Also see the GOSUB statement,

Version:
LC2, LC4

Format:
RETURN

Comments:

The RETURN statement will exit a subroutine, and begin execution at the line immediately

following the

most recently executed GOSUB statement. A subroutine may have several

RETURN points. Execution of a RETURN without a prior GOSUB will result in a "RETURN
without GOSUB error*.

Example:
100

800

1000
1010
1020
1030
1040

GOSUB 1000

END

IF C$ = "ERROR" THEN RETURN

IFC$ = "LOW" THEN A = 10

IF C$ = "HIGH" THEN A = 100 ELSE A = 45
B=A*5145/D

RETURN

LC2/LC4 BASIC

RIGHTS$ Function

Purpose:

Returns a subset of x$ which consists of the right-most i characters of that string.

Version:
LC2, L.C4

Format:

¥$ = RIGHT(x%,n)
x$ is any string expression.
n is an integer expression which specifies the number of characters to be retumned.

Comments:

If n is greater than or equal to the length of x3, then the entire string x$ is returned. lf n is
zero, the null string {length zero) is returned.

Example:
The right-most ten characters of the string B$ are returned.
100 B$ = "OPTO22, Huntington Beach, California”
110 PRINT RIGHT$(B$.10)
RUN

California

ok

LC2/LC4 BASIC

RUN Command

Purpose:

Begins execution of a program.

Version:
LC2, LC4

Format:
RUN

Comments:

RUN begins execution of the program currently in memory starting at the lowest line
number,

Example:

The following example illustrates the use of the RUN command to execute a short program.

100 REM This program prints the numbers from 1 to 10
110 FOR A% =1 TO 10

120 PRINT A%;

130 NEXT

RUN

12345678910

ok

LC2/LC4 BASIC

SIN Function

Purpose:

Returns the sine of the argument value which is expressed in radians.

Version:
LC2, LC4

Format:
v = SIN(X)

X is the angle in radians whose sine is to be calculated,

Comments:

The result returned by the sine function is a single precision, real value. To convert a value
in degrees to radians, multiply the number of degrees by 0.01745329,

Example:

100 DEGZRAD = 0.01745329 '‘Obtained From 3.14159/180
110 DEGREES = 80

120 RADIANS = DEGREES * DEG2RAD

130 PRINT SIN(RADIANS)

RUN

1

ok

This example converts 90 degrees to its equivalent radian value then calculates the sine.

LC2/LC4 BASIC

SLEEP Command

Purpose:

To disable a single LC2/LC4 or all LC2/LC4's on a multidropped communications line in
order to download programs to selected units.

Version:
LC2, LC4

Format:
SLEEP [n]

n is an integer value which indicates the address of the [.C2/L.C4 unit to be disabled,

Comments:

If no address is specified when the SLEEP command is issued, all LC2/LC4 units on the
same communications link which are powered up and not executing a program will be
disabled from the communications line.

The SLEEP command is normally issued from the host terminal or computer when different
programs must be downloaded to separate LC2/LC4's. After all LC2/L.C4’s are disabled,
individual units can be made active using the AWAKE command to enable a unit and then
downioad or enter a program from the host terminal.

Also see the AWAKE command and ADDRESS@ variable.

Example:
See the APPENDICES section on Multidropping Several LC2/LC4's.

LC2/LC4 BASIC

SQR Function

Purpose:

Heturns the square root of .

Version:
LC2, LC4

Format:
v = SQR(x)

X must be greater than or equal to zero.

Example:

This example calculates the square roots of the humbers 100, 300, 500, 700, and 900.
100 FOR A = 100 TO 900 STEP 200
110 PRINT A; SQR(A)
120 NEXT
RUN
100 10
300 17.320508
500 22.360679
700 26.457513
900 30

ok

LC2/L.C4 BASIC

STOP Statement

Purpose:

Terminates program execution and returns to the command level,

Version:
LC2, LC4

Format:
STOP

Comments:

STOP statements may be inserted anywhere in a program to terminate execution. When
LC2/L.C4 BASIC encounters a STOP statement, the following message will be displayed:

break in line nhnnn

where annnn is the line number where the STOP occurred.

Program execution may be resumed by issuing a CONT statement at the command level.

Example:

This example prints the message "HELLO WORLD" then stops. The CONT statement
allows the program to continue and the value of A is then printed.

100 PRINT *HELLO WORLD*
110 A=10*1.45

120 STOP

130 PRINT"A =" A
RUN

HELLO WORLD

break in line 120

ok
CONT
A =145

ok

LC2/LC4 BASIC

STR$ Function

Purpose:

Converts x to its equivalent string value.,

Version:
LC2, LC4

Format:
v$ = STR$(X)

X is any numeric expression,

Comments:

The string returned by STR$ will contain a leading blank if x is positive. This leading space
is the space reserved for the plus sign (+). Large numbers and small numbers will be
converted to exponential form. Fractional values will generate leading zeros if not
converted to exponential farm, The VAL function is complementary to the STR$ function.

Example:

This example first converts the number in A to a string BS, then prints the value of the
string and its length.

100 A = 123456

110 B$ = STR$(A)

120 PRINT B$; LEN(B$}
RUN

1234586 7

LC2/LC4 BASIC

TIMES$ Variabie And Statement

Purpose:

Sets or returns the current time from LC2/LC4's real-time clock.

Version:
LC2, LC4

Format:
v$ = TIMES

or
TIMES = x$

Comments:

The current time is returned as a string which is eight characters long. The string is
returned as hiumm:ss, where hh is the hour (00 to 23), mm is the minutes (00 to 53}, and
ss is the seconds (00 to 59).

For the statement TIME$ = x8, used for setting the current time. x$ is a string expression
which indicates the time to be set. x$ may be specified in either of the following forms.

hhSets the hour in the range 0 to 23. Minutes and seconds default to 0D.

hh:mmsSets the hour and minutes. Minutes must be in the range 0 to 59.
Seconds default to 00.

hh:mm:ssSets the hour, minutes, and seconds. Seconds must be in the range 0 to 59.

At least one digit must be included in the above forms and the leading zero may be
omitted. For example, if you wanted to set the time as 43 minutes after midnight, you could
enter TIMES$ = "0:43", but not TIME$ = ":43". Out of range values will cause an "illegal
function call" error and the previous time is retained. If x$ is an illegal string, a "type
mismatch” error will occur.

Example:

The following example is a subroutine which will send the host an alarm message and the
time of occurrence assuming OPTOMUX has just detected the error.

100 ALLMSGS = "Pump 5 failure at"
110 PRINT ALLMSGS$; TIMES
120 RETURN

LC2/LC4 BASIC

TIMER Function

Purpose:

Returns a floating point number indicating the number of seconds since midnight.

Version:
LC2, LC4

Format:
v = TIMER

Comments:

The resolution of the TIMER function is 100 milliseconds for LC2 and a resolution of 1
second for L.C4.

Example:

This example pauses a BASIC program until the current time is 3:55:00 AM.

100 IF TIMER < 14100 THEN GOTO 100 "Wait For 03:55:00

LC2/LC4 BASIC

TROFF And TRON Commands

Purpose:

To trace the execution of program lines.

Version:
LC2, LC4

Format:
TROFF

TRON

Comments:

The TRON command may be used in the indirect mode for purposes of debugging program
lines, TRON causes the line number of each program line to be printed as the line is
executed. The line numbers will be displayed enclosed in square brackets, The trace
feature is turned off by using the TROFF command. The TRON and TROFF statements
may also be used within a BASIC pregram.

Example:

In this example, the trace feature is activated by issuing the TRON statement before the
program is run. As the program is executed, the line numbers appear in brackets. The
numbers not in brackets are the values of P, M, and Q which are printed by the program.

100 M=100

110 FORP=1TO3
120 Q=M+50

130 PRINTF; M; Q
140 M=M+100

150 NEXT
160 END
TRCN

ok

RUN

[1001{1$0][120][130] 1 100 150
[140][150][120][130] 2 200 250
[140][450][120][130] 3 300 350
[140][150][160]

ok
TROFF

ok

LC2/LC4 BASIC

VAL Function

Purpose:

Converts the string x$ to its numerical vaiue.

Version:
LC2, LC4

Format:
¥ = VAL(x$)

x$ is a string expression.

Comments:

Leading blanks, line feeds, and tabs are stripped off by the VAL function before the string
x$ is converted. The VAL function will stop converting when a non-numeric character is
encountered in x$. The complement of the VAL function is the STR$ function.

Example:
In this example, VAL is used to extract the house number from an address.

PRINT VAL (15461 Springdale Street")
15461

ok

LC2/L.C4 BASIC

VARPTR Function

Purpose:

Returns the address in memory of the specified variable.

Version:
LC2, LC4

Format:
v = VARPTR(variable)

variable is the name of a numeric or string variable or array element in your program.

Comments:

The address returned by the VARPTR function is an integer in the range 0 to 65,535.
When using VARPTR to return the address of an array element, specifying element zero
(VARPTR(A(0))) will return the base address of the array. This is useful when passing
parameters to machine language programs because the other elements in the array can be
calculated from the base address.

WARNING!: The VARPTR function should only be called when it is needed. Assigning the
result of a VARPTR function to a variable, and then using that variable later in the program
may produce the wrong results. A variable's location may move around as other variables
grow or change. The following is a table of the different types of variable and its byte size.

Type Size

integer 2 bytes

Real 4 bytes

String 1 byte per character

integer values are stored least significant byte first. Arrays and strings are stored
sequentially.

Example:

This example uses the VARPTR function to get the data from a variable. This is not a very
practical example but it does illustrate how the VARPTR function works. Line 110 obtains
the address of the variable DATA% by using the VARPTR function. Since DATA% is an
integer, its data is stored as two bytes with the least significant byte first. Line 120 gets the
actual value of the data by reading the values using the PEEK function. The value in the
second position is multiplied by 256 because it is the high order value.

100 DATA% = 500

110 ADDR = VARPTR(DATA%)

120 VALUE = PEEK(ADDR} + 256 * PEEK(ADDR+1)
130 PRINT VALUE

LC2/LC4 BASIC

WAIT Statement

Purpose:

Suspends execution of a program while monitoring the status of an I/O port,

Version:
LC4

Format:;
WAIT port, n [.m]

Comments:
port is the /O address in the range of 0 to 255.
n, m are integer expressions in the range of 0 to 255.

The WAIT statement suspends execution until a specified bit pattern appears at the
specified I/O location. The data at the port is first XORed with the integer expression m
and then ANDed with n. If the result is not zero, then program execution continues with the
next statement. If the result is zero, BASIC loops back and reads the I/O location again. m
is optional and if omitted, i is assumed to be zero.

Refer to the LC4 Hardware Description And Installation manual (Form 157} for a description
of valid HO locations.

WARNING!: It is possible to remain in an infinite loop when using the WAIT statement if a

port is specified which never changes. To interrupt the loop and stop the program, use
Ctrl-C.

Example:

This example waits for the third bit at /O location 80 Hex to become a 1 (this can
correspond to an input module in position 2 of a PAMUX station jumpered for address 0).

100 WAIT &Hg04 'Weit For Input Module 3 To Go High

LC2/LC4 BASIC

WHILE And WEND Statements

Purpose:

Statements within the loop are executed as long as a given condition is true,

Version:
LC2, LC4

Format:

WHILE expression

Gmtgmgm&

WEND

expression is any numeric expression.

Comments

if the expression is true (non-zero), the statements will be executed until a WEND
statement is encountered. When the WEND statement is reached, LC2/LC4 BASIC will
loop back to the WHILE statement and check the expression. If expression is still true, the
process will be repeated. If expression is false, execution will resume with the statement
following the WEND statement.

WHILE... WEND loops may be nested to fifteen levels. Each WEND will match the most
recent WHILE. If LC2/LC4 BASIC does not find a matching WEND for a given WHILE, a
"WHILE without WEND*® error message is displayed. Similarly, an unmatched WEND
statement will cause a "WEND without WHILE" errar,

Example:

This example will continue to prompt for, and execute commands by calling appropriate
subroutines until "Q" is entered in response to the prompt.

100
110
120
130
140
150
160
170
180

WHILE A$ <> "Q"

INPUT "ENTER COMMAND (Q to quit): A$
IF A$ = "D" GOSUB 1000

IF A$ = "E* GOSUB 2000

IF A$ = "C" GOSUB 3000

IF A$ = "S* GOSUB 4000

IF A$ = "F* GOSUB 5000

WEND

STOP

LC2/LC4 BASIC

APPENDIX A

Error Messages
The LC2/LC4 BASIC is capable of detecting many etrors which cause a program to stop running. Upon

detection of such an error, an error message is displayed. The value shown as ERR represents the
value that will be placed in the ERR system variable.
The following is a list of all the LC2/LC4 BASIC error messages:

NEXT Without FOR (ERR 1)

A NEXT statement has been encountered without a matching FOR statement. Make sure the
variable used in the NEXT statement is the same as the variable specified in the FOR statement.

Syntax Error (ERR 2)

A program line contains an Incorrect sequence of characters; such as, incorrect punctuation or a
misspelled statement or command.

RETURN Without GOSUB (ERR 3)

A RETURN statement has been encountered in the program without a GOSUB statement being
exscuted first.

Out Of Data (ERR 4)
A READ statement is trying to read more data than is in the DATA statements.

lllegal Function Call (ERR 5)
A parameter which is out of range is passed to a LC2{L.C4 BASIC function.

Overflow (ERR 6)

The magnitude of a number is too large for LC2/I.C4 BASIC to represent in its number system. If it
is an integer value, try converting it to a single precision, real value,

Out Of Memory (ERR 7)

A program is too large to fit in the available memory space.

Unknown Line (ERR 8)

A reference to a line in a statement or command refers to a line which doesn’t exist in the program,

Dimension Error (ERR 10)

A variable has been assigned a dimension which is outside the range of values acceptable by
LC2/LC4 BASIC.

Division By Zero (ERR 11)

An expression contained a statement which attempted to divide by zero or raise zero to a negative
power.

LC2/LC4 BASIC

Error Messages (Continued)

Type Mismatch (ERR 13)

A string value appeared where a numeric value was expected, or a numeric value appeared where a
string value was expected.

String Too L.ong (ERR 15)

The expression is concatenating a string which is greater than 255 characters. String variables are
limited to a length of 255 characters.

Cannot Continue (ERR 17)

Trying to execute a CONT statement after a program has been edited or before a program has been
run.

RESUME Without Error (ERR 20)

The program has encountered a RESUME statement without having trapped an error. The error
trapping routine should only be entered when an error cccurs or an ERROR statement is executed.
You probably need to include a STOP or END statement before the error trapping routine to prevent
the program from going to the error trapping code.

Missing Operand (ERR 22)

An expression contains an operator, such as + or AND, with no operand following it.

FOR Without NEXT (ERR 26)

A FOR statement is missing a matching NEXT statement. Make sure the variable in the FOR
statement is the same as the variable specified in the NEXT statement.

WHILE Without WEND (ERR 29)

A WHILE statement in the program does not have a matching WEND statement.

WEND Without WHILE (ERR 30)

A WEND has been encountered before a matching WHILE has been executed.

Bad File Number (ERR 52)

A statement uses a file number of a file that is not open, or the file number is out of the range of
possible file numbers specified at initialization. Or, the device name in the file specification is too
long or invalid, or the filename was too long or invalid.

File Not Found (ERR 53)
A FILES, KILL, or OPEN references a file that does not exist on the RAM disk.

Bad File Mode (ERR 54)
Trying to execute an OPEN statement with a file mode other that APPEND, INPUT, or OUTPUT

LC2/LC4 BASIC

Error Messages (Continued)

File Already Open (ERR 55)
Trying to open a file that is already opened or trying to KILL a fils that is open.

Device I/O Error (ERR 57)

An error occurred on a device I/Q operation. When receiving communications data, this error can
occur from an overrun, framing, break, or parity errors.

RAM Disk Directory Is Full (ERR 59)

Trying to open more than the allowable number of filenames on the RAM disk.

RAM Disk Is Fuli (ERR 61)
All RAM disk storage space is allocated.

Input Past End (ERR 62)

This is an end of file error. An input statement is executed for a null (empty) file, or after all the data
in a sequential file was already input.

Use the EOF function to detect the end of file to avoid this error.
This error also occurs if you try to read from a file that was opened for append or output.

Bad File Name (ERR 64)

An invalid form is used for the filename with the FILES, KILL, or OPEN statement.

Garbage In File At Line nnnn (ERR 66)

This message occurs when the program has been corrupted because of memory loss or POKEs into
incorrect memory locations. The [ine number where a problem occurred is indicated by nnnnn.

Break (ERR 100)

The Ctrl-C key combination has been pressed during program execution to
terminate the program,

Out Of Variable Storage Space (ERR 101)

Additional variables cannot be created because there is not enough RAM space available for
another variable.

Right Parenthesis Expected (ERR 102)

The program is missing a right parenthesis. There must be an equal number of right and left
parentheses in an expression or statement.

LC2/LC4 BASIC

Error Messages(Continued)

Left Parenthesis Expected (ERR 103)

The program is missing a left parenthesis. There must be an equal number of right and left
parentheses in an expression or statement.

Array Has Already Been Dimensioned (ERR 104)

The expression to dimension an array contains the name of a previously dimensioned array.

Gosub Stack Overflow (ERR 106)

Nesting GOSUB statements too deeply or missing RETURN statements. Make sure each
subroutine is capable of returning to the GOSUB statement which called it.

FOR/NEXT Stack Overflow (ERR 107)

Too many FORINEXT loops for the available memory or branching out of a FOR/NEXT loop has
caused the stack area to be exceeded.

String Stack Overfiow (ERR 108)

Operations involving too many or exceedingly long strings have resulted in LC2/LC4’s temporary
string workspace to be used up. Breaking up string operations into several smaller parts may
remedy this problem.

WHILE/WEND Stack Overflow (ERR 109)

Too many WHILE/WEND loops for the available memory or branching cut of a WHILE/WEND locp
has caused the stack area to be exceeded.

Input Conversion Error (ERR 111)

Data being entered into the system does not match the variable type assigned to receive the data.

LC2/LC4 BASIC

APPENDIX B
ASCII Character Set
Decimal Hex Character Decimal Hex Character
o S 00 CTRL @ (NUL) 32 20, . ivinnn. Space
Tiiinnnn, o1 CTRLA (SOH) 33 7S IR !
2., 02 CTRLB (STX) 34 22, s "
3......... 03 CTRLC (ETX) 35 ..., i B #
4.,........ 04 CTRLD (EOT) B/ P 3
5. e, 05 CTRLE (ENQY) a7 25 . .. %
6.....0... 06 CTRL F {ACK) 38 26..... 000t &
AN 07 CTRL G (BEL) 39 27 '
8..oiun.. 08 CTRLH (BS) 40 - S (
9......... 09 CTHRL 1 (HT) 41 20..........)
10......... OA CTRLJ (LF) 42 2A ...l *
1., oB..... CTRLK vT) 43 eB +
1200, oc..... CTRLL (FF) 44 2C ... ,
18......... oo CTRLM (CR) 45 oD ..., .
14......... 0E CTRHRLN (S0O) 45 2E
15 OF CTRLO (SI) 47 oF /
16......... 10 CTRLP (DLE) 48 30. ... 0
17 oot 11 CTRLQ (DC1) 49 3 1
18......... 12 CTRLR (DC2) 5 2. 2
19 13 CTRL S (DC3) 51 3
20 14 CTRL.T (DC4) 52 4.......... 4
21 ..., 15 CTRLU (NAK) % I 35.. .00t 5
22 16 CTRLV (SYN) 54 36 6
23 ..., .. 17 CTRLW (ETB) 55 37 . 7
24 18 CTRL X (CAN) 56 38.......... 8
25 19 CTRLY (EM) 57 39..........]
26 1A CTRLZ (SUB) 58 A ...l
27 .. 1B..... CTRL[(ESC) 59 ... 3B :
28.......... 1C..... CTRL\ (FS) 60 ac ... <
20 1D..... CTRL] (GS) 61 a =
20 15 CTRL " (RS) 62 3E >
al......... 1F CTRL (US) 63 aF ... ?

LC2/LC4 BASIC

ASCII Character Set (Continued)

96 60
97 61
98 62
89 63
100........ 64
101........ 65
102........ 66
103........ 67
104........ 68
105........ 69
106........ 6A
107........ 6B
108........ 6C
109........ eD
110........ 6E
M1........ 6F
112........ 70
113........ 7
114........ 72
116........ 73
116........ 74
117 ..., 75
118........ 76
119........ 77
120........ 78
121........ 79
122........ 7A
123........ 7B
124 7C
126........ 7D
126........ 7E

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

LC2/LC4 BASIC

APPENDIX C

Multidropping Several LC2/LC4 On One Communications Line

In order to communicate or download different programs to each of several LC2/LC4's on a single
communications link, the following steps should be performed.

There are two general procedures to be followed, assigning addresses and communicating with each
local controller.

Assigning Addresses
Step 1:

Turn off power to all LC2/LC4’s on the communications link.
Step 2:

LC2: Power up one of the LC2's and assign it a unique address by using the statement
ADDRESS@ = pn. Where n is the address you have selected. The statement is sent from
the host terminal after the power up message is received and the NEW statement has
been sent to clear LC2's memory. After the address is set, verify it by sending a PRINT
ADDRESS @ statement. If all is well, turn off the LC2's power.

LC4: The LC4 has hardware address jumpers, refer to the LC4 Hardware Description And
Installation manual on setting the address jumpers. After the address is set, turn on power
and verify it by sending a PRINT ADDRESS@ statement. [f all is well, turn off the LC4’s
power.

Repeat Step 2 for each LC2/LC4 on the link. When all LC2/L.C4's have been assigned an
address, continue with the next precedure.

LC2/LC4 BASIC

Communicating With Each LC2/LC4
Step 1:

Power up all LC2/LC4’s and make sure they are not currently running programs. (The
AUTOBOOT jumper must not be installed, refer to the LC2 or LC4 Hardware Description
And Installation manual.)

Step 2:

From the host terminal, issue a SLEEP command (with no address specified). This will
cause all LC2/LC4's which are actively listening to become disabled.

Step 3:

From the host terminal, issue an AWAKE n command, where n is the address of the
selected [LC2/LC4 which is to receive a downloaded program.

Step 4:

Enter or download the appropriate program to the LC2/LC4. It should be the only unit
listening and responding on the link.

Step 5:

After the program has been downloaded, send a SLEEP command to disable the LC2/L.C4
which is awake.

Step 6:

Repeat steps 3, 4, and 5 until all LC2/LC4’s on the link have been programmed.
Step 7:

From the terminal, issue an AWAKE command (with no address specified). This will

enable all LC2/1.C4’s currently aslesp. Now sending a RUN command will cause all
LC2/L.C4’s to begin executing their programs.

LC2/LC4 BASIC

APPENDIX D

Sample Programs

LC2/LCA4 to IBM PC Communications
with the LC2/LC4 Being Interrupted by the IBM PC

This example shows how the LC2/L.C4 can be programmed to interrupt on characters sent by a host
computer or terminal. The ON KEY statement is used to trap certain characters and jump to a
specified subroutine which then executes a process. [f the host is a computer, running a
supervisory program, at selected times the host can interrupt LC2/L.C4 to pass information back and
forth by sending one character as the request command.

Program running in LC2/L.C4:

10
20
30
40
50
60

g9

100
110
120
130
140

180
200
210
280
300
a10

380

ON KEY("A") GOSUB 100
ON KEY("B") GOSUB 200
ON KEY("C") GOSUB 300
KEY("A") ON
KEY("B") ON
KEY("C") ON

" MAIN PROGRAM

END

** ROUTINE TO PROCESS KEY A

FOR 1% =1 TO 10 'Loop To Pass Parameters
PRINT X%{1%), Y%({1%) 'Send Host Two Arrays
NEXT 'End The Loop

RETURN

™ ROUTINE TO PROCESS KEY B

n

RETURN

* ROUTINE TO PROCESS KEY C

i

RETURN

LC2/LC4 BASIC

LC2/LC4 to IBM PC Communications
with the IBM PCbeing Interrupted by LC2/L.C4

The following is an example of a LC2/1.C4 device interrupting a host computer (in this case an IBM
PC). The program in the host is running at the same time as the program in LC2/LC4. The
example is not a complete program, but shows a method of alarm logging to a host.

Program in .C2/L.C4:

1000
2000

3000

PRINT "ALARM HAS OCCURRED AT STATION 1"

PRINT "ALARM HAS OCCURRED AT STATICN 4*

END

Program in IBM PC (running concurrent to LC2/LC4's program)

100
110
120
130

900

1000
1010
1020
1030

1050
1060
1070
1080
2000

ON ERROR GOTO 2000
OPEN "COM1:19200,N,8,1" AS #1 '
ON COM(1) GOSUB 1000

COM(1) ON

'MAIN PROGRAM

END
FOR I% = 1 TO 100

NEXT

IF LOC(1) = 0 THEN RETURN
MESSGS$ = INPUT${LOC(1),#1)
LOCATE 1,1:PRINT MESSG$

OPEN "ALARMS" FOR APPEND AS #2
PRINT #2,DATE$, TIME$, MESSG$
CLOSE #2

RETURN

RESUME

'Retry On Errors

Open Port To LC2/LC4

"Interrupt On Messages From LC2{LC4
"Turn Cn Interrupts

'‘Delay For Message Completion

‘Make Sure Bufter s Not Empty
‘Get Message

'Display Message

'Open Alarm File

"Time Stamp And Save Message
‘Close Alarm File

‘Return

'If Error Then Retry

LC2/LC4 BASIC

A Sample LC2/L.C4 Basic Program

Ty e el ol e ol o A e e e e ol s e s o e el ol v vl o o ot e i e o el

DATA ACQUISITION {LC2/LC4 VERSICN)

This program continuously reads the status of 3 boards,

{2 discrete and 1 analog) and maintains a table of the
current status. After each read, a check is made between
the current status and the previous status. If a change

is encountered, a message Is constructed and sent to the
tost terminal or computer. The message describes the
event and also contains time and date information. At

any time, LC2/LC4 can be interrupted by a host terminal or
computer which sends the 'S' character. When LC2/L.C4
senses that a 'S’ character is received, a complote message
is sent o the host, which contains information on all the
status points in the table,

Futhermore, a small control algorithm is implemented to
activate outputs whenever counters on corresponding inputs
reach a multiple of five counts. An analog input is also
used to set an analog output.

This program serves no actual useful purpose except to
illustrate the concept of LC2/L.C4 to HOST and HOST to
LC2/LC4 interaction.

MAIN PROGRAM

Pl i Al e il o A e e ke ekl o o i o i ke

GOSUB 4750 ’Run The Initailization routines

. PROCESS LOOP

GOSUB 1470 ’Read The OPTOMUX Countsrs

GOSUB 1040 'Check Counters And Set Outputs Accordingly
GOSUB 1170 'Read Analog Inputs

GOSUB 1340 'Set Analog Output Based On Analog Input #3
GOSUB 1660 'Read Status Of Discrete Points

GOSUB 710 ‘Compare New Status To Old Status Arrays
GOTO 430 ‘Do The Process Loop Qver Again

END 'End Of Program

LC2/1.C4 BASIC

1110
1120
1130
1140
1150
1160
1170
1180
1180
1200

™ SUBROUTINES

CALL OPTOWARE (ERRCOD%,ADDR%,CMD%,POSIT%(0), MODIF%(0),INFO% (0))
IF ERRCOD% < 0 THEN GOSUB 3430
RETURN

L]

" PROCEDURE WHICH COMPARES NEW VALUES TO GLD VALUES

"

L]

FORI% =1TO4

{F B%/(1%) <> A%(1%) THEN GOSUB 2180 'if Different, Display Message
NEXT

FOR[%=5TO7

L

" iF ANALOG VALUES OUTSIDE DEADBAND OF OLD VALUES, DISPLAY MESSAGE
IF (B%(1%)< A%(I%) - DBND/2) OR (B%(1%)> A%{[%)+DBND/2) THEN GOSUB 2160
NEXT

FOR 1% = 8 TO 11

" {F COUNTERS ARE DIFFERENT, DISPLAY MESSAGE

th

IF B%{1%) <> A%(1%) THEN GOSUB 2160

NEXT

GOSUB 940 ‘Update Old Array To Equal New Array
RETURN

" SETS OLD ARRAY EQUAL TO NEW ARRAY

FOR I% = 1 TO 11
BY%(1%) = A%(1%)
NEXT

RETURN

* CHECKS THE COUNTER VALUES AND SETS APPROPRIATE OUTPUTS

L

FOR 1% =8 TO 11

* IF MULTIPLE OF 5, TURN ON OUTPUT ELSE TURN OFF CUTPUT
IE (A%(1%) MOD 5) = 0 THEN GOSUB 1820 ELSE GOSUB 1840

NEXT

RETURN

H

* READ ANALOG INPUTS

e

Sy e e ek i ok ik el e skl s el s ok el e i Ao Ao

£

ADDR% = BOARD3
CMD% = 37 'Read Analog Inputs
POSIT%{0) =0

LC2/LC4 BASIC

1210
1220
1230

1250
1260
1270
1280
1290
1300
1310
1320
1330

1350
1360

POSIT%(1) = 1
POSIT%(2) = 2
POSIT%(3) = -1
GOSUB 610
A%(5) = INFO%({0)
A%(8) = INFO%(1)
A%(7) = INFO%(2)
RETURN

'End Of The List
'Call The Driver

"

™ UPDATES THE ANALOG OUTPUT

ADDR% = BOARD3
CMD% = 35
POSIT%{(0) » M1
POSITY%(1) = -1
INFO%(0) = A%(7)
GOSUB 610
RETURN

"Write Analog Output

'Call The Driver

"

" READ ALL THE COUNTERS

ADDRY% = BOARD1
CMD% = 22
POSIT%(0) = S1
POSIT%(1) = 52
POSIT%(2) = -1
GOSUB 610

A%(8) = INFO%(0)
A%(9) = INFO%(1)
ADDR% = BOARD2
GOSUB 610
A%(10) = INFOY%(0}
A%(11) = INFO%({1)
RETURN

'Call The Driver

'Cail The Driver

Fatr et ol vl ol sk ok et i ok e et ol sl e e ol il ol ol e ol ekl o e sl ok ek ek b el i ok sl kol

" READ DIGITAL INPUT STATUS

ADDR% = BOARD1
CMD% w 12
GOSUB 610

A%(1) = INFO%(0)
A%(2) = INFO%({1)
ADDR% = BOARD2
GOSUB 610

A%(3) = INFO%(0)
A%(4) = INFO%(1)
RETURN

'Read Status Command
'Call The Driver

'Call The Driver

e

"™ TURNS ON A SPECIFIC OUTPUT

IF 1% < 10 THEN ADDR% = BOARD1 ELSE ADDR% = BOARD2

CMD% = 10

IF {1% = 8} OR (1% = 10) THEN POSIT%(0) = 2 ELSE POSIT%(0) = 3

POSIT%{1) = -1
GOSUB 610
RETURN

'Call The Driver

L]

LC2/LC4 BASIC

" TURNS OFF A SPECIFIC QUTPUT

IF 1% < 10 THEN ADDR% = BOARD1 ELSE ADDR% = BOARD2
CMD% = 1 Turns Off Outputs

IF (1% = 8) OR {I% = 10) THEN POSIT%(0) = 2 ELSE POSIT%(0} = 3
POSIT%(1) = -1

GOSUB 610 'Call The Driver

RETURN

ket e ol e i ot el eyl ol skl s e e skl e s s ke e e ok ket ek sl ik

"

™ CONVERT ANALOG VALUES TO ENGINEERING UNITS
e

Frse srirsirdr e ottt vl A s i e sl et v s el ety s vl s skl e A e sk il e e b ol Aok e e i i ok el

L]

TEMP1 = (A%(5)*.08262) - 188.4 'Convert Temp Sensor To Degrees C
TEMP2 = (A%(6)*.08262) - 188.4 ‘Convert Temp Sensor To Degress C
VOLTS = (5/40986) * A%(7) 'Convert § Volt Reading To Volts
RETURN

i SENDS STATUS CHANGE MESSAGE TO HOST

GOsSUB 2060 'Calculate Analog Engineering Units
GOSUB 2260 'English Status

PRINT DATES;" ;TIMES;" ITEMS(1%);" ";STATUS${1%);" " UNITS$(I%)
RETURN

B ek dede ok o s e e e s s i o o v sl e o s e e el e ol sk el e o R AR
L]

" SETS THE STATUS MESSAGE VARIABLES TO ENGLISH EQUIVALENTS

"

L]

FOR J% = 1TO 4

IF A%{J%) = 1 THEN STATUS$(J%) = "ON " ELSE STATUSS${J%)="OFF"
NEXT

STATUSS(5) = STR$(TEMP1)

STATUS$(5) = STRS$(TEMP2)

STATUSS$(7) = STR$(VOLTS)

FOR J% = 8 TO 11

STATUSS(J%) = STRE(A%(J%))

NEXT

RETURN

B T e
™

* INTERRUPT SERVICE ROUTINE FOR TRAPPED KEYS

i

i)

GOSUB 2060 "Calculate Engineering Units For Analog

GOSUB 2260 ‘Update Status Messages In English
PRINT

PRINT " “* CURRENT SYSTEM STATUS ***

PRINT

PRINT " TODAY'S DATE: ";,DATE%;" TIME: ", TIME$
PRINT

FOR M% =1 TO 11

GOSUB 2610 'Display Message For Each [fO Point
NEXT

PRINT

PRINT

RETURN

Feirdedr e o ey el e e e e o e oy e e o sl ol ol vt e ik iy sl e e e
*

" BUILD AND SEND MESSAGE TO HOST

™"

LC2/LC4 BASIC

2610
2620
2630

2650
2660
2670
2680
2680
2700
2710
2720
2730
2740
2750
2760
2770
2780
2730
2800
2810
2820
2830

2850
2860
2870
2880
2890
2900
2910
2020
2930
2640
2050
2960
2970
2080
2080
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3180
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300

"

PRINT ITEMS(M%);" " ;STATUSS(M%);" ";UNITS$(M%)

RETURN

* System Constants

OPTOWARE =4 'Location Of The OPTOWARE Oriver
DIM POSIT%{15) ‘Dimension POSITIONS Array

DIM INFO%(15) ‘Dimension INFO Array

DIM MODIF%({1) ‘Dimension MODIFIERS Array

DIM A%(15) ‘Dimension New Status Areay

DIM B%(15) 'Dimension Old Status Array

DIM ITEM$(15) 'Message Array For item Description
DIM UNITS$(15) ‘Message Array For Engineering Units
DIM STATUS$(15) ‘Array To Represent Status In English

" CONSTANTS WHICH SET UP ADDRESSES AND POSITIONS OF OPTOMUX IO

EL

BOARD1 = 255 "Address Of Board #1 (Digital {/O)
BOARD2 = 254 'Address Of Board #2 (Digital [/O)
BOARDS3 = 2309 ‘Address Of Board #3 (Analog IfO)
Li=2 "Cutput #1, Board 1, Position 2
L2=3 'Output #2, Board 1, Position 3
L3=2 *Qutput #3, Board 2, Position 2
l4=3 "Qutput #4, Board 2, Position 3
Si=0 'Iinput #1, Board 1, Position 0

82 =1 'Input #2, Board 1, Position 1

S3=0 'input #3, Board 2, Position 0

S4=1 'Input #4, Board 2, Position 1

T1=0 'Analog Input #1, Board 3, Position G
T2 =1 "Analog Input #2, Board 3, Position 1
R =2 ‘Analog Input #3, Board 3, Position 2
M1 =3 'Analog Output #1, Board 3, Position 3

* DEADBAND FOR COMPARING ANALOG VALUES

™"

DBND = 10 '‘Deadband Value

" MESSAGE CONSTANTS USED FOR DESCRIBING POINTS AND EVENTS

"

ITEM$(1) = "SWITCH $1 "
ITEM$(2) = "SWITCH S2 n
ITEMS$(3) = "SWITCH S3 "

ITEM$(4) = "SWITCH S4 "
{TEMS$(5) = "TEMPERATURE PROBE #1"
ITEM$(6) = "TEMPERATURE PROBE #2°
ITEM$(7) = "POTENTIOMETER *
TEMS$(8) = "COUNTER FOR S1 *
ITEMS$(9) = "COUNTER FORS2 *
ITEM$(10)= "COUNTER FOR 83 *
ITEM$(11)= "COUNTER FOR S4 "

UNITSS$({) ="

UNITS$(2) =" .
UNITS$(3) =" .
UNITS$(4) =" .
UNITS$(5) = "DEGREES C .
UNITS$(6) = "DEGREES C "
UNITS$(7) = "VOLTS *

UNITS$(8) = "COUNTS *
UNITS$(9) = "COUNTS *
UNITSS$(10)= "COUNTS *
UNITS$(11)= "COUNTS *
RETURN

oo s st skl o ol o o o ol e o el o ook ek ok e ol ot e el o e ok ke

" INITIALIZE OPTOMUX VARIABLES

s s o sk sk o itk o e e e ok ok et o et ol ek ke sl Ak i ey

"

FOR (% = 0 TO 15
POSIT%(%) =0
INFO%(1%) = 0

LC2/LC4 BASIC

NEXT
MODIF%{0) = 0
MODIF%(1) = 0
ADDR% = 0
ERRCOD% =0
CMD% = 0
RETURN

" ERROR CHECK ROUTINE

PRINT e .
PRINT" OPTOMUX COMMUNICATIONS ERROR"

PRINT DATES;" ":TIMES$;" ERROR#: ;ERRCOD%;" AT ADDRESS: ;ADDR%
PRINT sy

RETURN

WAk A e e dedy el doirde e deeldnkcied bl ek ko kg ok A ek ksl ik el

b ROUTINE TO SEND POWER UP CLEAR TO BOARD 1

ADDR% = BOARIM

CMD% = 0

GosuB 610 'Call The Driver
RETURN

" ROUTINE TO SEND POWER UP CLEAR TO BOARD 2

Pk e e e o ek ool o e o e s ok ol e e de i d e e ok e e ek e ke e e e e

h

ADDR% = BOARD2

CMD% =0

GOSUB 610 'Call The Driver
RETURN

T

" ROUTINE TO SEND POWER UP CLEAR TO BOARD 3

L]

2]

ADDR% = BOARD3

CMD% =0

GOosuUB 610 'Call The Driver
RETURN

e

" ROUTINE TO RESET BOARD 1

L]

Salt s detirde e e el e e e e e e e sy sheiead ol e e s ol ek ol e ok e b el e sl e e o o s Ak e s ek

(1]

ADDR% = BOARD1

CMD% = 1

GOSUB 610 'Ceall The Driver
RETURN

" ROUTINE TO RESET BOARD 2

L]

e

ADDR% = BOARD2

CMD% = 1

GOSUB 610 'Call The Driver
RETURN

LC2/LC4 BASIC

4010

4030

T fedeviesir e e desie e s el ok s sl il s ol o ol ol ol sl sl e ol e o s b e s vt s ok e s e i i A e ke e
hir

" ROUTINE TO RESET BOARD 3

i

T drde s At ot e i oot s o sl vl ok ol ol ol ol vl s ot o ol ol e o oo b ol el e e s ok ik e e sy e dp e e e

L

ADDR% = BOARD3

CMD% » 1

GOSUB 610 'Call The Driver
RETURN

" ROUTINE TO CONFIGURE OUTPUTS

CMD% =8

ADDR% = BOARDA1

POSIT%(0) = L1 ‘Also L3
POSIT%(1) = L2 'Also L4
POSIT%(2) = -1 'End The List
GOSUB 610 'Call The Driver
ADDR% = BOARD2

GOSUB 610 'Call The Driver
ADDR% = BOARD3

POSIT%(0) = M1

FOR 1% =4 TO 15
POSIT%(% - 3) = 1%

NEXT

POSIT%(13) = -1 'End The List
GOSUB 610 'Cali The Driver
RETURN

* INITIALZE THE DATA ARRAYS

"
et e s i ol s o sl vl ol sy o skl e el el ool il el s oo ol ol oo e o o ol e sl o sl ook s e ok e

™"

FOR 1% = 1 TO 15
A%(1%) = 0
B%(1%) = 0

NEXT

RETURN

» SET UP THE KEYS TO TRAP FROM HOST

ON KEY("S"} GOSUB 2420 'Goto Interrupt Service Routine On A Trap
ON KEY{("s") GOSUB 2420 'Goto Interrupt Service Routine On A Trap
KEY{"S") ON 'Enable Key Trapping

KEY{"s"} ON ’Enable Key Trapping

RETURN

"™ STARTS COUNTERS ON ALL SWITCHES

g

LC2/LC4 BASIC

4610
4620

4650
4670

4680
4700
4710
4720
4730
4740
4750
4760
4770
4780
4790
4800
4810
4820
4830

4850
4860
4870
4880

ADDR% = BOARD1

CMD% = 19

POSIT%(0) » S1

POSIT%(1) = 82

POSIT%(2) = -1

GOSUB 610 'Call The Driver
ADDR% = BOARD2

GOSUB 610 'Call The Driver
RETURN

" INITIALIZATION ROUTINES

i
Tl it o st s ot gl e e i stk e skl ok s il itk ok ek ke sk ok deddninieies okl kol i o

(L

GOSUB 2640 ‘Initialize Variables

GOsSUB 3270 ‘Initialize OPTOMUX Arrays To Zero
GOSUB 3540 'Send Power Up Clear To Board 1
GOSUB 3650 'Send Power Up Clear To Board 2
GOSUB 3760 'Send Powsr Up Clear To Board 3
GOSUB 3860 'Resst Board 1

GOSUB 3960 'Reset Board 2

GOSUB 4060 'Reset Board 3

GOSUB 4160 '‘Configure Output Positions On All Boards
GOSUB 4380 'Initialize Status Arrays A And B
GOSUB 4600 'Start Counters On All Digital Inputs
GOSUB 4490 'Set Up Key Trapping Routine

BETURN

LC2/LC4 BASIC

APPENDIX E

Tips and Techniques

For best readability, programs should be written in a modular fashion with lots of comments. The term
"modular” implies the use of subroutines accessed with the GOSUB statement. The GOTO statements
should not be used if it can be helped. Each subroutine should perform only one function.

For maximum speed, place the critical subroutines which are called the most often, at the beginning of
the program. This reduces the time LC2/L.C4's BASIC spends in searching the program for the correct
line number when a GOSUB statement is executed. Comments should be removed if speed
optimization is necassary. For maximum performance but less readability, do not use subroutines, but
rather place all code in line and repeat it where needed.

Preset the variables to be used in the CALL OPTOWARE statement early in the program. Then use
different OPTOWARE CALLS with different sets of parameters so as not to reassign variables during
the program’s exscution. Remember, assignment costs time.

If comments are to be removed in order to make room for more program code or for speed
optimization, then a commented file or a commented listing should be kept for documentation and
debugging purposes.

Use the ON TIMER function for time dependent tasks,

Routines which initialize the program or devices and are only performed at the start of the program
should be placed at the end of the program and shouid be the first thing called from the main program
loop.

Constants, such as the addresses of OPTOMUX stations should still be assigned to variables in case
their value should need fo be changed at a later time. This makes the program more readable and
later allows a change to be made in one place rather than at every place in the program where that
parameter is used.

NOTE: LC2/LC4 BASIC allows the same program to be written in a variety of ways. Some ways are
better than others and the method is dependent on the application. What works great in ona
application may not work well in the next. You might even need to experiment to find the best solution.

The NEW command must be issued prior to entering or downloading a program.

LC2/LC4 BASIC

APPENDIX F

Exceptions & Differences from IBM/Microsoft BASIC

The following is a list of differences between LC2/L.C4 BASIC and IBM/Microsoft BASIC. Refer to the
section "Commands Not Supported in LC2/LC4 BASIC" for information on specific commands which are
not supported,

The following apply to LC2/LC4 BASIC:
® Arrays are one dimension and up to 255 slements
® Floating point numbers are single-precision numbers.
® Only one statement or command is allowed per program line.

® Commas or semicolons must be used as delimiters for commands, spaces are not allowed as
delimiters.

¢ The CLEAR command with the option will reserve space at the beginning of memory and does
not reserve stack space.

® The STR$ function will return a leading space on a fractional number.

® There is ne "line" option on the RETURN command.

R

.

LC2/LC4 BASIC

APPENDIX G

IBM/Microsoft BASIC Commands
Not Supported in LC2/L.C4 BASIC

ATN

AUTO

BEEP

BLOAD

BSAVE

CDBL

CHAIN

CIRCLE

CLS

COLOR

COMMON

C8NG

CSRLIN

CvD

Cvi

CvVs

DEFDBL

DEFFN

DEFINT

DEFSEG

DEFSNG

DEFSTR
DEFUSR
DRAW

EDIT

ERASE

FIELD

GET

LOAD
LOCATE
LPCS

LPRINT USING
LSET

MERGE

MKD$

MKI$

MKS$

MOTOR

NAME

OCT$

ON PEN GOSUB

ON STRIG GOSUB

OPEN

OPTICN BASE

PAINT

PEN

PEN OFF

PEN ON

PEN STOP

PLAY

POINT

PCS

PRESET

PRINT #f USING

PSET

PUT

RANDOMIZE

RENUM

RESET

RND

RSET

SAVE

SCREEN

SGN
SOUND
SPC(n)

STICK
STRIG(n)
STRIG(n) OFF
STRIG(n) ON
STRIG(n) STOP
STRIG OFF
STRIG ON
STRINGS

TAB

WIDTH

WRITE

WRITE #f

TAN

USRN(x)
VARPTR$
VARPTR (#)

OPTO 22

43044 Business Park Drive « Temecula, CA 92590-3514
Phone: 800/321-0PTO (6786) or 909/695-3000
Fax: 800/832-0PTO {6786} or 909/695-2712
Internet Wehb site: http://www.opto22.com

Product Support Services:
B00/TEK-OPTO (835-6786) ar 909/695-3080
Fax: 908/695-3017
E-mail: support@opto22.com
Bulletin Board System (BBS): 909/695-1367
FTP site: ftp.opto22.com

